AI大模型行业2025年发展趋势:智能体崛起、多模态融合、普惠化加速

在2024年,全球科技领域取得了众多突破性进展,人工智能(AI)、量子计算、清洁能源、生物技术等领域的成就深刻改变了我们的生活。展望2025,科技发展将进一步呈现加速态势,同时也将与社会、经济和环境的需求更紧密地结合。未来一年,不仅是技术创新的关键节点,也将是技术从突破到成熟应用的加速时期。

1、可能的趋势一:智能体风起云涌

2024年,智能体这一概念已初露锋芒,受到众多科技巨头的青睐。2025年,智能体有望迎来跨越式发展,成为AI领域的一大亮点。中国工程院院士邬贺铨在2025年ICT行业趋势年会上,将这一年视为智能体与AI终端的元年。

AI智能体则是由AI驱动的软件工具,只需少量监督即可执行多步骤任务。它们不仅精通自然语言处理,还能决策、解决问题,并与环境互动。智能体具备接受自然语言命令、与场景互动、初步思维链等能力,能拆分任务,拥有记忆、规划、调用工具和执行行动的本领。在行动闭环中,智能体将大模型知识内化为长期记忆乃至感悟,独立完成特定任务。

赋予大模型“先验”世界知识后,AI正逐步学会感知、检索、分析、推理、规划、决策、执行,化身为智能体。它们将融入人类生活场景,像员工一样被企业培训,使用工具,在不同应用和平台间调用函数与功能,协助或独立完成任务。智能体间的协作也将改写软件和服务,创造更多价值。据凯捷公司报告,目前仅约10%的企业使用AI智能体,但82%的企业计划在未来三年内将其整合进工作流。

2、可能的趋势二:多模态市场增长

多模态是人类世界的本质特征,通用人工智能(AGI)的发展必将朝着多模态方向迈进。技术将实现从文本、图像、视频到声音、光线、电流,乃至分子、原子等各类模态的跨越,并具备跨模态迁移能力。

随着通用人工智能渐行渐近,大模型将向多模态领域拓展。当前,大模型正向端侧转移,端侧大模型在本地数据处理效率、节省云端服务器带宽和算力成本、用户数据隐私保护以及开启更多交互新方式等方面具有独特优势,有望成为未来交互的新入口。

3、可能的趋势三:更加普惠便捷

大模型本质上是应用导向的技术,其发展呈现出两条曲线:能力上升与成本下降。这使得技术能力得以快速落地和应用。纵观人类科技发展史,始终是一个用更低价格做出更好产品、实现最大程度普惠的过程。

芯片行业的发展便是典型例证,在摩尔定律的推动下,晶体管密度快速提升,而单位晶体管的制造成本却以更快的速度下降,从而让电视、电脑、手机和互联网等产品走进千家万户。大模型作为基础设施,其规模效应亟待显现,商业化路径亟待清晰化。

2025年,人工智能行业站在全新起点,智能体的蓬勃发展、多模态市场的快速增长以及技术的普惠化,共同勾勒出一个更加智能、互联和个性化的世界蓝图。这些趋势不仅预示着技术创新的浪潮,更将深刻影响我们的工作方式、生活习惯乃至社会结构。

智能体的兴起,标志着AI从被动响应到主动执行的转变,它们将成为日常工作中的得力助手,提升效率的同时,在某些领域展现超越人类的能力。多模态AI的发展,使大模型能更好地理解和响应复杂查询,提供丰富直观的交互体验。技术的普惠化,则让AI技术更加亲民,更多人和企业能够负担得起并利用AI,为社会整体进步和创新注入强劲动力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值