1、 Dify能力:插件安装,变身MCP客户端
在Dify社区里,开发者们在插件市场大展身手,精心打造出多款超实用的 MCP插件,让 Dify 拥有了神奇的 “智能连接魔杖”。通过插件能力,轻轻松松就能把外部强大的 MCP 服务,无缝接入到自己的 Agent 应用或工作流中,给 AI 助手装上超级外挂!
以下两款插件,都可以让dify 具备发现和使用MCP服务的能力:
1)MCP SSE:Agent 的 “超能力雷达”
MCP SSE 就像是 Agent 应用专属的 “超能力雷达插件”!它可不是普通的工具,而是能够同时和一个甚至多个 MCP Server “唠嗑” 的神奇存在。想象一下,在你的 Agent 应用里,它就像一个不知疲倦的小探险家,在茫茫的网络世界里帮你 “发现” 各种宝藏般的外部工具,然后还能精准 “调用” 它们。它采用的 HTTP + Server-Sent Events(SSE)传输机制,就好比给这个小探险家装上了一条超级快速、永不堵车的 “信息高速公路”,让数据和指令能像闪电一样快速传递,确保 Agent 应用能够快速、稳定地使用外部工具,轻松应对各种复杂任务!
2)MCP Agent Strategy:Workflow 的 “智能大脑升级包”
MCP Agent Strategy 堪称 Workflow 的 “智能大脑升级包”!它巧妙地把 MCP 协议直接融入到 Workflow 的 Agent 节点中,就像给 Agent 注入了超强的 “智慧基因”。有了它,Agent 不再是按部就班的执行者,而是变成了拥有自主思考能力的 “智能决策大师”。
它能根据 MCP 协议的逻辑,自由判断什么时候该调用哪些外部工具,实现 “AI 自主决策 + 动态调用工具” 的超能力组合!比如在处理复杂的数据分析任务时,Agent 可以自己决定调用数据清洗工具、可视化工具等,让整个工作流变得更加智能、高效,就像拥有了一个专属的智能工作小助手!
3)安装方法
- 点击右上角“插件”,通过“探索Marketplace”访问插件市场;
- 在插件市场中,输入MCP,搜索插件;
- 选择“MCP SSE”,并点击安装,等待插件安装完成。
今天我们计划采用的是Chatflow来生成智能体,安装MCP SSE足矣。
2、 MCP服务器配置
第一步我们已经完成了MCP SSE插件的安装,那应该让MCP SSE这个智能雷达朝哪里监测和发现工具呢?
——没错,接下来我们就需要给他制定方向,即配置上MCP服务器的地址,这样它就可以在这个服务器上监测和找到工具了。
1)MCP服务器配置
回到“插件”,找到MCP SSE,在打开的“MCP 服务配置”输入需要的MCP服务器地址。
服务器地址按下面格式,将 URL替换掉。
{ "server_name": {
"url": "https://mcp.amap.com/sse?key=42f6", #替换为服务器配置地址
"headers": {},
"timeout": 5,
"sse_read_timeout": 300
}
}
点击“保存”,若正确,则展示“已授权”
看到这里,小伙伴们是不是会生成疑问:那这个url应该从哪里获得呢?
2)选用MCP服务器,获取URL
目前高德和百度地图,都支持了MCP SSE方案。
此处我们以“高德地图”为例进行说明,按高德地图的说明,个人需要先完成注册和实名认证,然后就可以在高德地图开放平台创建应用,获取对应的MCP服务器密钥。(https://lbs.amap.com/)
当前高德地图MCP支持地图,周边搜索,路径规划,天气查询等多项能力,通过它基本上就能满足我们进行行程规划等场景的工具需求。
3)创建和获取高德地图MCP密钥
- 登录控制台,“创建新应用”
- 添加key:输入key名称,选择 Web服务,提交。
- 获取对应的key
- 按照高德地图快速接入的指引(https://lbs.amap.com/api/mcp-server/summary),可以看到url 为 : “https://mcp.amap.com/sse?key=您在高德官网上申请的key”,将key替换为我们前面获取到的key就可以。
重点提醒:个人账号一定要完成个人开发者的实名认证,否则无法调用。体现到dify里呢,就是在配置 SSE的时候,会报错,提示服务器无法连接。
我遇到的报错信息如下:
Run failed: Failed to transform agent message: PluginInvokeError: {“args”:{},“error_type”:“HTTPStatusError”,“message”:"Server error ‘504 Gateway Time-out’ for url ‘https://mcp.amap.com/mcp/message?sessionId=8ff46fcc-bf1b-4ac8-8474-45658e8a5d8d’\nFor more information check: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/504*"}*
如下:在个人账号信息里,点击“开发者认证”;按照提示完成认证。
3、 零代码搭建超级助手智能体
操作视频如下:
1)创建Agent
2)设置提示词
"
你是一个超级助理,能够根据输入的指令,进行推理和自主调用工具,完成并输出结果。
注意,需要判断是否调用高德MCP来获取对应工具协助你完成任务。
"
3)添加MCP工具
4)选择deepseek模型和Agent模式
5)测试发布
最终输出结果:
“
*五一北京→上海3天旅游计划*
Day 1:城市经典探索🚄交通建议:
- 选择早班高铁(如G5次,07:00北京南→12:00上海虹桥),车程约4小时30分。
📍 行程安排:
-
外滩+南京路步行街
(13:00-15:30):
- 漫步万国建筑群,远眺陆家嘴天际线
- 可步行至南京路体验百年商业街
-
豫园&城隍庙
(16:00-18:30):
- 明代园林建筑与特色美食(推荐南翔小笼包)
-
夜游黄浦江
(19:30-21:00):
- 十六铺码头乘游船赏两岸灯光秀
Day 2:迪士尼梦幻之旅🎫实用贴士:
- 提前通过官方APP购票(建议早享卡)
- 必玩项目:翱翔·飞跃地平线、创极速光轮
⏰ 参考路线:07:30 到达乐园排队 → 全天游玩 → 20:30 城堡烟花秀
Day 3:文艺+归程☕上午:田子坊+新天地
- 09:00 田子坊弄堂艺术区(石库门文创小店)
- 11:30 新天地(午餐推荐蟹黄汤包)
🚄 返程建议:
- 推荐高铁G12次(14:00上海虹桥→18:45北京南)
💡 行前准备*:1️⃣ 交通:提前15天候补12306车票2️⃣ 天气:根据工具查询五一期间上海有阵雨,建议携带折叠伞+防晒霜3️⃣ 住宿:推荐人民广场附近酒店(近地铁1/2/8号线)4️⃣ 门票:迪士尼门票可通过高德MCP工具比价(当前官方价665元/日票)5️⃣ 攻略:使用高德地图「maps_around_search」实时查询景点周边餐厅排队情况*
✨ 特色体验建议:迪士尼烟花后乘2号线到南京东路站,步行至外滩感受深夜静谧的万国建筑群。
”
今天的案例就到这里,我们手把手实现了一个基于MCP的智能旅行规划的超级助手。
相比原来通过一个复杂的工作流来调用不同的API来实现,或者对比manus浏览器去自动打开搜索/读取/总结再输出结果,这种方案无疑又一步降低了Agent使用的门槛。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。