一、初识 Coze:你的 AI Bot 开发一站式平台
1、Coze 平台介绍
- Coze 中文名称“扣子”,是由字节跳动推出的新一代一站式 AI Bot 开发平台,于 2024 年 2 月 1 日正式上线。
- 官方定义:扣子是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类 AI 应用,并将 AI 应用发布到各个社交平台、通讯软件,也可以通过 API 或 SDK 将 AI 应用集成到你的业务系统中。
- 提供国内(www.coze.cn)和国际(www.coze.com)两种版本。
2、Coze能做什么
借助扣子提供的可视化设计与编排工具,你可以通过零代码或低代码的方式,快速搭建出基于大模型的各类 AI 项目,满足个性化需求、实现商业价值。
- 智能体:智能体是基于对话的 AI 项目,它通过对话方式接收用户的输入,由大模型自动调用插件或工作流等方式执行用户指定的业务流程,并生成最终的回复。智能客服、虚拟伴侣、个人助理、英语外教都是智能体的典型应用场景。
- 应用:应用是指利用大模型技术开发的应用程序。扣子中搭建的 AI 应用具备完整业务逻辑和可视化用户界面,是一个独立的 AI 项目。通过扣子开发的 AI 应用有明确的输入和输出,可以根据既定的业务逻辑和流程完成一系列简单或复杂的任务,例如 AI 搜索、翻译工具、饮食记录等。
具体应用场景如下:
- 智能客服 :帮助企业快速响应客户咨询 ,提升客户满意度。
- 内容创作 :提供图文创作助手模板 ,可帮助用户快速生成内容 ,包括标题、配图和正文等。
- 数据分析 :可以搭建数据分析系统 ,帮助企业处理和分析数据 ,为决策提供有力支 持。
- 个性化服务 :支持多模态交互 ,可为用户提供个性化的服务和体验。
- 企业内部应用 :为企业内部搭建各种智能应用 ,如员工问答、项目协作等 ,提升团 队协作效率
3、Coze注册与基本界面
- 登录扣子控制台(www.coze.cn)
- 使用手机号或抖音注册/登录。
注册后默认是基本版本的,当然可以升级为专业版本。
专业版在基础版的功能之上支持更大的团队规模、更高的知识库空间以及协作编辑容量,并提供专业完善的售后服务体系,满足开发者和企业用户的业务需求。
登录扣子之后,我们会发现 Coze 的主要内容都在左侧,包括主页、工作空间、商店、模板、扣子API等主要功能
默认是在主页界面,如下图:
二、核心引擎:Coze 工作流创建入门
1、什么是工作流
说白了,工作流就是一组任务,它们共同完成一个大目标,然后把大目标拆成小任务。
就像我们做菜的流程一样:
先洗菜→切菜→开火→倒油→炒菜→放调料→出锅
其中,每个动作就是一个小任务也就是一个节点,工作流里就包括了这些节点,每个节点就负责一小部分功能。
这些节点与开始和结束一组合,就构成了完整的工作流,如下图所示。
工作流:是指一系列相互关联的步骤或任务,用于完成特定的业务过程或项目。它定义了任务的顺序、执行者以及相关的条件和规则,以确保流程的顺利进行和最终目标的达成。
工作流支持通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,从而实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。
2、工作流创建步骤详解
- 登录扣子平台。
- 在左侧导航栏中选择工作空间,并在页面顶部空间列表中选择个人空间。
- 在资源库页面右上角单击 +资源,并选择工作流。
- 置工作流的名称与描述,并单击确认。
注意:工作流名称只允许字母、数字和下划线,并以字母开头
- 确定后,进入工作流编排界面:
三、 掘金新风口:“治愈系”短视频与 Coze 的完美邂逅
1、为何“治愈系”内容成为流量密码?
眼下,一股“治愈系卡通+暖心文字”的风潮正席卷各大社交平台,成为流量新宠。这类内容不仅能舒缓都市人的紧绷神经,更蕴藏着可观的创作收益与商业潜力——无论是视频号分成,还是多平台引流、收徒、广告变现,前景都颇为可期。然而,传统的制作方式,如DeepSeek+即梦+剪映的组合拳,往往耗时费力,难以满足高频发布的需求。
今天,我将为您揭秘一种革命性的高效方案:利用Coze工作流,实现一站式视频创作。您只需输入一个核心主题,后续的文案构思、画面匹配、批量绘图乃至视频剪辑,皆可自动化完成。更妙的是,最终成品将以剪映草稿的形式呈现,方便您进行个性化微调。整个过程仅需一分钟左右,极大解放您的生产力,助您轻松抢占内容创作的快车道!
2、需求分析:为何选择 Coze 工作流赋能“治愈系”创作?
用户心理洞察:当前社会生活节奏快,人们普遍面临压力,对能够提供情绪价值、缓解焦虑的“小美好”内容需求旺盛。“治愈系”图文/视频内容恰好满足了这一心理需求。
创作者痛点聚焦:
- 效率瓶颈:手动构思文案、寻找配图、剪辑视频流程繁琐,产出效率低下。
- 副业探索:许多用户希望通过在小红书等平台发布此类笔记内容进行副业尝试,但苦于制作速度慢,难以形成规模效应。
- Coze的价值:通过Coze工作流,可以一键输入主题,自动化完成文案、配图、剪辑,极大提升创作效率,助力创作者抓住流量红利。
3、视频分析:自动化“治愈系”视频的核心思路
通用制作框架:
- 主题确立与文案生成:基于核心主题,利用大模型生成符合“治愈”调性的文案。
- 视觉元素匹配:根据文案内容,智能生成或匹配温馨、可爱的视觉元素(如卡通形象、柔和场景)。
- 图文声智能融合:将文案、图像/动画、背景音乐等元素有机组合,自动生成视频初稿。
- 便捷微调与发布:输出易于编辑的格式(如剪映草稿),方便创作者进行个性化调整和快速发布。
Coze 工作流在此流程中的关键作用:通过节点编排,将上述各环节无缝衔接,实现端到端的自动化。
四、 实战案例:用 Coze 一分钟打造“治愈系老奶奶”暖心视频
核心流程拆解
- 使用大模型生成治愈文案。
- 文案拆分并一步生成匹配的画面提示词,实现人物形象(老奶奶与橘猫)的固定与统一。
- 批量生图,进一步控制人物和文字的搭配。
- 最后组合素材生成剪映草稿和视频。
Coze 工作流全局视图
提醒:看不清没关系,可结合下面的拆解进一步理解
关键插件
如同上次分享的“中式养生视频”,本项目也需依赖“剪影小助手”插件。
获取方式:访问 https://www.51aigc.cc/#/home?user_id=7551
(由速推AIGC大佬开发),
注册后在主页【剪影小助手】下载并安装。。
工作流节点逐一解析
开始节点
输入内容是title主题,count对应文案的字数。
文案生成大模型节点
文案生成的大模型节点,我们可以按需选择你觉得效果不错的模型,提示词部分可以使用鸡汤文风格短句。
这里注意文案部分并没有引入人物身份,大家可按需自行调整和优化。最终输出一段100字左右的文案。这里需要注意的是,如果句子字数过长,会导致后续图像生成和视频的时间变长,这里自行控制调整。
文案生成提示词:
你是一位鸡汤文案专家
根据用户提出的话题,生成1段简短的感悟语录,极简风格,简短句子、治愈且富有内涵。
## 格式
整句之前使用句号间隔,字数限制{{count}}字。
直接输出语录文案。
文案分割节点
我们对前一步生成的文案进行分割,按照标点符号进行拆分,而后对每句话进行配图。
删除空白字符节点
用代码去除分割后数组中包含的的空白字符和空字符串。详细代码如下:
async def main(args: Args) -> Output:
params = args.params
texts = params['input']
# 移除数组中可能存在的空字符串和空白符
texts = [t for t in texts if t and t.strip()]
# 构建输出数组
ret: Output = {
"textList": texts
}
return ret
生成绘画提示词节点
这里使用大模型节点,为每句话生成相应的配图画面提示词。需要重点关注的是提示词部分和输出参数格式,我们使用数组对象结构一次输出句子和配图提示词。在后续的生图环节会使用到。提示词如下:
# 角色
你是绘本创作专家,治愈短视频文案专家。请结合用户提供的文案内容,按照下面的画面【人物形象】,生成相应的画面描述。画面中需要详细完成的描述人物形象、动作、场景等要锁,方便后续绘画专家进行绘制配图。
# 人物形象
一位亲切温暖的老奶奶,头发灰白、脸颊圆润泛红、嘴角上扬露出愉悦笑容,身边有一只可爱的橘猫
## 技能
### 技能 1: 生成画面提示词
1. 仔细分析用户提供的文案和语境。
2. 基于分析结果,构思不同的温馨场景。
3. 按照【人物形象】要求输出人物、动作和物品,形成绘画提示词。
- 示例:xx坐在摇椅上,面带微笑像是在说这什么。
- 示例:xx站在窗边,猫咪在窗台上蹭着她的手。
- 示例:xx坐在暖暖的阳光下,手里拿着一本旧书
- 示例:xx坐在温暖阳光下,手里拿着一本旧书,猫咪蜷在她膝盖上打盹儿
- 示例:xx在打理花园,给花浇水
- 示例:xx在景区户外游玩
## 输出格式:
直接输出原始文案和 配图提示词,以对象数组的结构输出。
参考如下对象数组的格式:
===
[
{
"text":"具体文案",
"prompt":"具体提示词",
}
]
===
## 限制:
- 仅围绕生成符合要求的绘画提示词进行回复,不回答其他无关问题。
- 输出内容必须简洁呈现人物、动作和物品。
批处理节点
引入批处理节点,搭配生图节点,实现图片的批量制作。
此处有两个细节需要注意,一是批处理节点的并发数尽量控制在4以下,避免过高报错。
图像生成部分我们又对人物形象进行了控制,并且引入了前面大模型的输出参数,作为提示词的一部分组合使用。
正向提示词参考:
宫崎骏风格,纯色背景,一个老奶奶,上方留白,一位头发灰白,头顶写着“{{text}}”的文字内容,
{{prompt}},嘴角上扬露出愉悦笑容,整体画面色彩柔和温暖、线条简洁流畅,简笔画,
彩铅手绘,治愈系插画,富有童趣,笔触简单,有线条感。
代码重组节点
引入代码节点,将图片和背景音乐素材进行重组,转换为剪映小助手插件的参数结构。代码如下:
import json
asyncdefmain(args: Args) -> Output:
params = args.params
# 构建输出对象
img_list = params.get(
"imageList"
, [])
imgs = []
# 处理图片的缝隙
img_start = 0
for
element
in
img_list:
start = img_start
end = img_start + 3000000
# 3秒
imgs.append({
"image_url"
: element,
"width"
: 1024,
"height"
: 768,
"start"
: start,
"end"
: end,
"transition"
:
"翻页"
,
"transition_duration"
: 1000000
# 1秒
})
img_start = end
# 修改音频部分输出结构
total_duration = len(img_list) * 3000000
audio = [
{
"audio_url"
: params.get(
"audio_url"
,
"https://houht.oss-cn-shanghai.aliyuncs.com/public/lnn.mp3"
),
"duration"
: total_duration,
"start"
: 0,
"end"
: total_duration
}
]
剪影小助手创建草稿节点
输入参数height是视频的高度(宽度),width是视频的长度 ,user_id是注册剪影小助手的用户id。
剪影小助手添加图片节点
draft_url是上个节点的返回,image_infos是代码重组节点处理好的输出参数。
剪影小助手添加音频节点
draft_url是创建草稿节点的返回,audio_infos是代码重组节点处理好的输出参数。
剪影小助手云端渲染视频节点
这个节点是在云端直接生成mp4视频。
优势:比较方便,直接生成mp4视频,用这种方式就可以不用剪影再打开导出了。
劣势:因为直接生成mp4视频了,是没办法用剪影进行二次剪辑的。
结束节点
试运行看结果
五、 拓展思考:从“老奶奶”到万千“治愈系”主题
Coze 工作流的强大潜力远不止于此。通过上文“治愈系老奶奶”的实例,我们已初步领略了其在自动化视频创作方面的强大效能。
触类旁通,灵活应用:这套方法论完全可以拓展至“治愈系老爷爷”、“元气少女”、“萌宠日常”等多样化主题,满足不同细分领域的内容需求。
实现个性化与灵活性的关键:
- 动态核心角色设定:预设多种人物/动物形象库,或通过更复杂的提示词动态生成。
- 定制化文案风格:拓展至哲理、幽默、叙事等,允许调整文案长度与结构。
- 精细化视觉参数:开放画面比例、色彩基调、构图偏好等为可配置项。
- 丰富的音效与配乐库:集成更多资源,甚至探索AI生成配乐。
进阶玩法:在工作流起始节点设置更详尽的输入参数,并引入条件分支与判断逻辑,以应对不同参数组合下的个性化内容生成需求。
重要提示:设定合理的默认值(兜底数据),确保即使用户未详细配置,工作流也能顺畅运行并产出有质量的基础内容,保证方案的健壮性与易用性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。