《2025大模型平台落地实践研究报告》 由百度智能云与中国信通院联合发布,围绕大模型平台落地实践展开研究,涵盖发展概述、落地策略、关键能力建设、实践案例及未来趋势等内容。
1. 大模型平台发展概述:大模型技术发展迅速,我国政策大力支持,市场需求旺盛,推动其在各行业落地。但大模型落地面临诸多难题,如顶层规划和需求分析盲目、技术壁垒高、运营管理机制缺失等 。大模型平台通过“建、用、管”模型,为大模型落地提供全流程支撑,解决技术转化与工程化应用难题 。
2. 大模型平台落地策略与路径:落地原则包括战略引领、因地制宜、标准化、开放协同、安全性和持续改进,确保平台建设契合企业战略与实际需求 。落地步骤分为评估诊断、方案制定、部署实施和持续优化,企业依据自身能力选择合适建设方案 。落地框架由模型开发层、模型服务层和应用开发层组成,各层提供不同功能,支持大模型从开发到应用的全流程 。
3. 大模型平台关键能力建设:模型开发层聚焦数据处理和模型开发难题,具备数据工程、模型调优、模型交付和提示词工程等能力 。模型服务层解决模型服务选型、稳定性和管理运营问题,提供模型服务加速、测试、管理和运营等功能 。应用开发层降低应用开发门槛,解决模型准确性、系统融合和开发技术难题,具备应用构建、能力扩展、应用调试和发布及运营等能力 。国内外有诸多典型大模型平台产品,如百度智能云千帆大模型平台、微软Azure AI Studio、亚马逊AWS Bedrock等,它们在功能和服务上各有特色 。
4. 基于大模型平台的实践案例分析:多个行业借助大模型平台实现业务升级。如互联网电商行业的爱库存通过千帆大模型平台打造超级助手,提升智能客服和瑕疵品识别能力;金融行业的泰康保险集团基于大模型平台构建知识底座,提升知识构建与应用效果;教育行业的考试宝利用大模型平台降低运营成本,提升用户体验和商业效益 。
5. 总结与趋势:大模型平台围绕“建、用、管”化解大模型落地难题,推动各行业智能化转型,且应用广泛、效果初显 。未来,大模型平台将在技术、应用、生态和安全方面持续发展。技术上提升多模态服务等能力;应用上推动数据飞轮运转,促进企业级应用爆发;生态上更加开源开放,完善标准体系;安全上健全保障体系,筑牢安全围栏 。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。