1 、 产业链全景图
2、概念解析
AI Agent(人工智能代理) 是一类具有自主执行能力的智能程序,它能够模仿人类的认知过程,通过收集环境信息、制定行动方案,最终独立完成各项任务。就像你委托它预订周末餐厅,它会先全面了解你的偏好和要求,这一信息收集过程如同人类的感知;紧接着,它会将预订任务拆解为筛选高评分餐厅、浏览菜品清单、敲定用餐时段等具体环节,完成策略规划;最后,有条不紊地执行每一步操作,直至成功预订,完整呈现出一套自动化的任务处理流程。
它的核心架构可以分成「大脑」和「三件套」:
核心能力(大脑): 基于大模型(LLM),就像人类大脑的中枢,负责理解问题、生成思路。
三件套关键要素:
规划(分解任务):当你要求 AI Agent 撰写一篇游记时,它就如同经验丰富的项目经理,利用强大的大模型将复杂任务抽丝剥茧,拆解为 “确定主题 - 罗列景点 - 抒发感受 - 选配图片” 等多个清晰的子步骤,让原本庞大的任务变得条理清晰、易于着手处理。
1、记忆(存储信息):短期记忆:AI Agent 会精准记住当前对话的来龙去脉,就好比人脑的瞬时记忆。例如,当你提及 “喜欢海边”,它在后续交流中始终将这一偏好牢记于心。不过,和人脑的短期记忆一样,它的容量有限,时间一长,这些临时存储的信息也会逐渐淡去。
2、长期记忆:AI Agent 可以与外部数据库或文件建立连接,如同拥有一本永不写满的笔记本。当你上传 PDF 手册后,它能将其中内容长期保存,在需要时随时调取,为处理复杂任务提供充足的资料支撑。
3、工具(调用外部能力):当面对超出自身能力范围的问题,比如查询天气、计算数据时,AI Agent 会像熟练的工人随手取用工具一样,自动调用对应的外部资源,如天气 API、计算器等,借助外力高效完成任务。
简单说,AI Agent 就像一个不知疲倦的智能助理,用大模型当大脑,靠规划拆任务、用记忆存信息、借工具补能力,帮人高效搞定各种复杂目标。
根据 OpenAI 的定义,AI 能力可以分成五个等级,就像游戏里的角色升级一样,从简单对话到主动办事一步步进化:
聊天机器人:专注于语言交互,能够理解人类语言并作出回应,例如微信中的客服助手,主要依据预先设定的对话模板进行交流;
推理者:擅长逻辑思维,如同人类一般对问题进行分析推导,无论是解答数学难题,还是规划合理的旅行路线,都能胜任需要逻辑思考的各类任务;
智能体:不仅具备思考能力,还能代替用户执行实际操作,从自动预订机票、整理繁杂资料,到发送邮件,均可高效完成;
创新者:拥有强大的创造属性,能够独立开展创作活动,无论是设计独特的产品,还是撰写精彩的小说剧本,都能展现其创新实力;
组织:处于 AI 等级的顶端,具备协调多个智能体协同作业的能力,如同一个全自动化的公司团队,能够完成复杂庞大的项目。
早期的 ChatGPT 等聊天机器人,其运行模式类似于学生解答题目,只能被动响应,用户提出一个问题,它们便给出一个答案,依赖单次推理处理简单任务。然而,随着技术的迭代演进,AI 实现了突破性转变,具备了 “内部思维推演” 的能力。当收到 “策划一场婚礼” 的指令时,它会在系统内部将任务解构为预算规划、场地选择、流程设计等多个环节,通过逐步思考与分析,最终付诸实践,这标志着 AI 推理能力的显著提升。
如今,大模型在自然语言理解、逻辑推理、任务适应以及自主执行等领域不断突破,AI 早已超越单纯 “答疑解惑” 的范畴,迈向 “主动执行任务” 的全新阶段,实现从传统推理工具到智能行动主体的蜕变。例如,当你要求 AI “预订周末酒店并同步行程至日历”,它会自主完成价格查询、评分比对、订单确认等一系列操作,还能自动更新日程安排。这类能够独立处理实际事务的智能体产品,正以惊人的速度在市场中推广普及。
3 、人机发展历程
与传统 AI 依赖人工分步指导截然不同(例如 Embedding 需要预先输入数据,Copilot 需在使用过程中逐步引导),Agent 模式的革命性在于其 “自主作业” 能力。面对任务目标,它无需人类干预,便能独立完成从记忆检索、逻辑推理、策略规划到任务执行的完整流程。以 “安排一次家庭旅行” 为例,传统 AI 必须等待指令,如 “先搜索酒店,再查找景点”;而 Agent 能够自行拆解任务步骤,灵活调用各类工具,整合多方信息,最终直接输出规划好的行程方案。在理想状态下,用户仅需提出任务目标和验收标准,Agent 即可全程自动化处理,宛如一位独立运作的智能帮手,极大提升效率、减少人力投入。
很多朋友想要对科技行业进行研究,却又不知从何下手,其实这时候选择ETF对整个行业进行跟踪便是一个不错的选择,就像恒生科技指数ETF(513180)。它对小米、阿里、腾讯、中芯国际这些设计前沿科技的股票都有持股,是一个实打实的科技型ETF。
4、上游产业链
4-1、算力:驱动智能的引擎
大模型驱动下的算力需求呈现井喷式增长:据预测,到 2025 年,AI 大模型所需的算力将飙升至 2020 年的 10 倍之多,其中企业级 AI 应用贡献了超半数的增长动力。这一趋势反映出企业在数字化转型进程中,对 AI 技术的依赖程度日益加深。
在全球芯片市场,英伟达凭借其高性能 AI 芯片,如 A100/H100,牢牢占据了超过 80% 的市场份额。当前,这些芯片供不应求,价格较之前翻了近 3 倍。与此同时,国内芯片厂商积极布局,华为昇腾、寒武纪、壁仞科技等企业加速自研进程。预计到 2025 年,国产 AI 芯片在国内市场的份额有望提升至 30%,展现出强劲的国产替代潜力。
云计算领域同样竞争激烈。2023 年,全球 AI 云算力市场规模达到 640 亿美元,AWS、Azure、谷歌云三家巨头共占超 70% 的份额。国内云厂商也不甘落后,阿里云、华为云、腾讯云等纷纷加大投入。阿里云更是计划在未来三年斥资 524 亿美元,用于扩充 AI 算力,旨在提升自身在全球市场的竞争力。
4-2、算法:塑造思维的框架
算法作为 AI 大模型的灵魂中枢,如同精密钟表的核心齿轮,从根本上决定模型的能力边界,主要涵盖深度学习框架与优化策略两大关键维度。
2017 年谷歌推出的 Transformer 架构,堪称 AI 发展史上的里程碑,它彻底革新了传统 RNN 的串行处理模式,允许模型并行解析海量数据,运算效率较传统架构提升超 10 倍。这一突破就像为 AI 换上了全新的 “超级处理器”,直接点燃了大模型技术爆发的导火索。
然而,大模型训练面临着高昂的成本挑战,以 GPT-4 为例,其训练成本预估高达 1 亿美元。幸运的是,稀疏化、蒸馏、量化等创新技术应运而生,它们如同高效的 “成本管控专家”,通过精简模型架构、压缩参数规模,成功将训练成本降低 30%-50%,极大减轻了算力与资金的双重压力。
在模型生态领域,开源模型(如 Meta 的 LLaMA)与专有模型(如 OpenAI 的 GPT)形成了独特的竞争格局。开源模型凭借开放共享的特性迅速传播,加速技术普及;专有模型则依托企业自研优势,专注特定场景的深度优化。两者相互竞争又彼此促进,共同推动 AI 行业技术的快速迭代升级。
4-3、数据:训练模型的燃料
数据质量直接决定 AI 模型效果 —— 就像做饭要用好食材,输入 “垃圾数据”,模型输出也会是 “垃圾”,研究显示 90% 的模型表现问题源于数据而非架构。
多样化数据源能提升模型通用性,比如 GPT-4 结合文本与图像、PaLM 2 整合多模态数据,让模型像 “多才多艺的助手” 处理更多任务。前沿技术还能让 AI 自己优化数据,比如通过自监督学习清洗数据、自动标注减少人工成本,NLP 中的 Tokenization 和 Embeddings 等预处理技术,则像给数据 “整理格式”,让模型更容易 “理解”。
4-4、发展趋势
训练法则的迭代:AI 训练法则的迭代就像升级学习方法:过去 “模型越大能力越强” 的规律(规模法则)只在训练阶段起作用,现在延伸到了实际应用时的推理阶段,导致对算力的需求持续增加。简单说,预训练(早期系统学习)和后训练(后期优化调整)是模型 “打基础” 的阶段,而测试时扩展法则(应用时按需强化)则是模型 “灵活解题” 的阶段,尤其是深度推理任务,可能让算力需求进一步上升。
预训练决定了模型的基础能力 “天花板”,后训练和测试时扩展则负责把潜力发挥出来。未来值得关注两大新模型:
Meta Llama-4 系列: 2025 年 4 月,Meta 推出 Llama-4,目前小模型 Scout 和中模型 Maverick 已发布,最大的 Behemoth 还在训练中。总参数接近 2 万亿,将成为 Meta 史上最大的预训练模型。
OpenAI GPT-5: 2025 年 2 月先推出了过渡版本 GPT-4.5,而真正的 GPT-5 已进入倒计时。它作为下一代大模型,会把 OpenAI 之前在 o 系列模型中测试的 “灵活扩展能力” 整合进来,让模型在处理复杂任务时更智能。
5 、中游产业链
现在 AI Agent 刚起步,各类企业已经抢着入局,跟着先行者的脚步,整个行业会越来越热闹。按核心优势分,主要有四类玩家:
企业自动化助手平台: 大多是原来做 “自动填表、发邮件” 这类办公自动化软件的公司,现在给平台装上大模型 “大脑”,帮企业流程(比如财务、客服)自动运转。
开发者工具箱: 大模型公司(如 OpenAI)和技术服务商提供工具,让程序员不用从头开发,直接 “组装” 出各种智能助手(Agent)。
行业专属智能软件: 原本做 ERP(管企业资源)、CRM(管客户)、营销、法律等垂直领域软件的公司,给自家产品加个 Agent “插件”,比如让它自动分析客户数据、生成合同。
智能设备入口: 面向普通用户的硬件,比如 AI 手机、AI 电脑,未来可能还有 AI 眼镜、智能汽车,这些设备会成为你用智能助手的主要渠道(比如手机上让助手规划行程,汽车里自动调导航)。
四类企业从不同方向推进,让智能助手既能帮企业干活,也能走进普通人生活。
Agent 综合开发平台就像 “智能助手工具箱”: 大模型公司(如 OpenAI)和技术服务商提供一套工具,让开发者不用懂复杂技术,就能像搭积木一样快速组装出各种智能体(比如电商客服、数据分析助手),还能帮你把做好的智能体发布到应用市场或对接企业系统。
它的核心是 “降低门槛”:哪怕你不懂编程,也能通过拖放功能、配置参数,按自己需求做出能用的智能工具(比如让它专门处理订单、写营销文案),并直接推给用户使用。 这类平台是智能体普及的 “基础设施”,就像当年的 App 开发工具催生手机应用爆发,现在它们正在推动智能助手进入各个领域。
那如何提前对这一类国内的优质企业进行布局呢?恒生互联网ETF(SH:513330)是一个不错的选择。像腾讯、美团、快手、京东、阿里这些头部的互联网科技公司,都被恒生互联网ETF纳入,如果想要全面覆盖这一波科技变革,选择它能事半功倍:
市场规模
未来十年 AI Agent 市场将迎来爆发式增长:据测算,2033 年全球市场规模有望超过 1300 亿美元(按 Market.us 数据达 1391.2 亿美元),2023-2033 年每年平均增长近 44%,相当于十年内规模翻超 50 倍。
麦肯锡报告指出,生成式 AI 就像 “智能助手流水线”,能在营销、客服等场景高效产出高质量内容(比如自动生成广告文案、策划活动方案),直接帮企业增收。更关键的是,他们梳理的 16 个业务领域中,63 个 AI 应用场景每年可创造 2.6 到 4.4 万亿美元的经济价值 —— 这相当于目前英国全年 GDP 的 1-2 倍。如果未来 AI 全面渗透到生产各环节,潜在价值能达到 6.1 到 7.9 万亿美元(接近日本全年 GDP)。
若按科技公司常见的 “价值分成” 模式(比如 ServiceNow 按创造价值的 10% 定价),仅这部分衍生的 AI Agent 市场规模就可能高达 7000 亿美元,相当于一个中等发达国家的经济总量。 简单说,AI Agent 不仅是技术工具,更像一个能 “造钱” 的新产业,正在开启万亿级市场空间。
中国 AI Agent 市场现在像刚发芽的种子,2024 年规模 1473 亿元,但每 100 家企业里不到 5 家在用(渗透率不足 5%)。 不过随着它给企业软件(SaaS)带来的增效越来越明显(比如让 CRM 自动分析客户数据、让财务软件自动生成报表),加上 “按需定制智能助手” 的开发市场成熟(比如能专门处理合同审核、营销文案的 Agent),2028 年市场规模预计暴增至 3.3 万亿元 —— 相当于 2023 年整个上海市 GDP 的 1.5 倍。
若AI Agent按应用场景分类,可分为企业管理、办公、营销、人力资源、财务、采购等。假设与SaaS应用分类比例相同,则Al agent企业管理与办公未来将占比40%,销售营销占比30%,人力资源占比10%。
6、 下游产业链——应用场景
6-1、AI 眼镜
AI 眼镜能成为 AI Agent 的 “黄金搭档”,主要靠这三个优势:
交互像聊天一样自然: 不用动手打字,直接说话下指令,甚至通过眼神、手势就能互动,就像你跟身边的助手说话一样,符合人的本能习惯;AR 让信息 “活” 在现实里: 借助增强现实技术,它能把导航路线、翻译文字、商品信息等虚拟内容直接叠加到你看到的真实场景中 —— 比如看路标时,眼镜会自动把中文翻译 “飘” 在英文路牌旁边,看商品时直接显示价格和评价,像给眼睛装了个 “智能投影仪”;随身戴,随时用: 作为穿戴设备,它比手机更轻便,不用专门拿在手里,出门戴着就能随时调用 AI 功能,比如通勤时让 Agent 规划路线,逛街时让它推荐穿搭,真正做到 “设备即助手”。
现在国内外厂商正加速布局:
国内:(雷鸟创新、百度等): 把 AR 技术和大模型结合,密集推出能 “看、听、说” 的多模态交互新品,比如支持语音操控 + 实时图像识别的智能眼镜,推动普通消费者市场爆发;
国外:(苹果 Vision Pro、Meta Ray-Ban):靠技术迭代(比如更清晰的显示、更自然的交互)和生态整合(比如对接自家软件服务),牢牢占据高端市场。
整个行业正朝着 “更轻、更贴场景” 发展,比如专门为办公设计的 “会议助手眼镜”、为购物设计的 “导购眼镜”。预计 2025 年后,AI 眼镜会像智能手表一样普及,成为 AI Agent 走进日常生活的重要入口。
6-2、企业服务
企业服务可能是 AI Agent 最先落地的地方,海外已有成功案例,主要有三个原因:
企业软件是 “数据仓库”: 办公、管理、客户等系统存着公司内部数据(比如合同、客户记录),这些数据能打造成企业专属 “知识库”,让 AI Agent 快速熟悉业务,就像新员工有了 “内部手册”;
企业软件是 “总控台”: 比如 OA 系统连接财务、人事等多个系统,AI Agent 以它为入口,能直接调用各系统功能(比如自动审批报销、核对考勤),像 “全能秘书” 一站式处理任务;
流程管理像 “流水线”: 企业里的审批、采购等流程规则明确、步骤清楚,AI Agent 能按规则自动执行(比如扫描合同条款、流转审批),效率比人工高很多。
简单说,企业服务场景有数据、有平台、有重复流程,让 AI Agent 既能 “懂行” 又能 “高效干活”,自然成了最先落地的 “试验田”。
金山办公:办公场景或是Agent关键入口,公司具有流量优势
基于AI AGENT(人工智能体)范式驱动WPS AI伴写功能,具体有四大特色:全文补全功能、多种内容生成、不同身份与文风的切换、古诗词内容补全。更新后的WPS AI伴写支持添加包括云文档、网页等参考资料,用户完成标题后只需0.5秒就能理解用户意图并续写内容。
办公场景高频且功能多样,是 AI Agent 的核心入口。 金山办公作为国产办公软件龙头,用户基数庞大 —— 截至 2024 年 9 月 30 日,旗下产品月活设备数 6.18 亿(WPS Office PC 版 2.77 亿,移动版 3.38 亿),这种高频使用和入口优势,让它有望成为办公智能体的主要标杆。
科大讯飞:办公智能体打造个人办公新范式
2025 年 1 月,科大讯飞推出 “办公智能体套装”,覆盖企业与个人场景,包含三大板块:星火智能体平台:企业的 “智能底座”,接入 20 + 大模型、支持 10 + 文件格式与多语言,已在 5000 + 企业落地,集成 AI 搜索、虚拟数字人等六大能力,搞定知识管理与多模交互。
B 端智能体: 星火纪要:会议结束 5 分钟生成结构化纪要,效率提升 70%;星火投标:内置 100 + 行业模板,30 分钟生成标书内容,节省 60% 编写时间;星火陪练:模拟 10 + 岗位场景,新人培训周期从 4 周缩至 2 周;星火快答:支持 10 种语言的数字人讲解,客户满意度提升 40%。
C 端智能体: 讯飞智文:100 + 行业模板,一键生成 PPT,效率快 3 倍;讯飞文书:20 + 政务模板,公文写作效率提升 50%;讯飞绘文:15 + 创作场景,支持风格秒切换;讯飞绘镜:50 + 视觉模板,30 分钟产出专业短视频。
这套方案靠技术底座(5000 + 企业在用)和细分工具(如标书编写省时 60%),成为覆盖全办公场景的 “智能搭档”。
7、 核心标的情况
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。