Link:http://lx.lanqiao.org/problem.page?gpid=T120
问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
1 2 3
2 1 5
样例输出
14
AC code:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int mod=1000000007;
LL dp[55][55][15][15];//前两维对应地图,第3维为宝物个数,第4维为这些宝物的最大值
int map[55][55];
int n,m,k,num,maxvalue;
int main(){
while(cin>>n>>m>>k){
memset(dp,0,sizeof(dp));
dp[1][1][0][0]=1;//初始化
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++){cin>>map[i][j];map[i][j]++;}//避免编号为0
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
for(int num=0;num<=k;num++){//继承上左的情况
for(int maxvalue=0;maxvalue<=13;maxvalue++){
dp[i][j][num][maxvalue]+=dp[i-1][j][num][maxvalue];
dp[i][j][num][maxvalue]+=dp[i][j-1][num][maxvalue];
dp[i][j][num][maxvalue]%=mod;
}
}
for(int x=1;x<=k;x++){//拿起宝物后拥有x个宝物时的代码
for(int y=0;y<map[i][j];y++)dp[i][j][x][map[i][j]]+=dp[i][j][x-1][y];//拿起宝物
dp[i][j][x][map[i][j]]%=mod;
}
}
}
LL sum=0;
for(int i=0;i<=13;i++)sum+=dp[n][m][k][i];
cout<<sum%mod<<"\n";
}
return 0;
}