【分析】
很容易发现,若可以移动,则每次不会选择原地不动。所以,偶数秒时,拿走宝石,四周的消失,奇数秒时,移动到没有宝石的格子。即相邻格子最终无法同时取到。所以就是方格取数问题,最小割解决。
【建图】
- 黑白染色,S向黑格连边,流量为点权值;
- 白格向T连边,流量为点权值;
- 黑格向四周白格连边,流量INF;
【代码】
#include <cstdio>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#define N 10005
#define M 100005
#define INF 1000000001
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pa;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,cnt=1,S,T,ans;
int b[M],p[N],nextedge[M],w[M],cur[N];
int Level[N],a[105][105];
int dx[]={0,0,1,-1};
int dy[]={1,-1,0,0};
void Add(int x,int y,int z)
{
cnt++;
b[cnt]=y;
nextedge[cnt]=p[x];
p[x]=cnt;
w[cnt]=z;
}
void Anode(int x,int y,int z){
Add(x,y,z);Add(y,x,0);
}
void Input_Init()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) a[i][j]=read();
}
void Build_Graph()
{
T=n*m+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
static int x,y;
x=(i-1)*m+j;ans+=a[i][j];
if((i+j)&1)
{
Anode(0,x,a[i][j]);
for(int k=0;k<4;k++)
{
int xx=i+dx[k],yy=j+dy[k];
if(xx<1||yy<1||xx>n||yy>m) continue;
y=(xx-1)*m+yy;
Anode(x,y,INF);
}
}
else Anode(x,T,a[i][j]);
}
}
bool Bfs()
{
queue<int>q;
q.push(S);
for(int i=0;i<=T;i++) Level[i]=0;
Level[S]=1;
while(!q.empty())
{
int k=q.front();q.pop();
for(int i=p[k];i;i=nextedge[i])
{
int v=b[i],f=w[i];
if(!Level[v]&&f)
{
Level[v]=Level[k]+1;
q.push(v);
}
}
}
return Level[T];
}
int Dfs(int x,int maxf)
{
if(x==T||!maxf) return maxf;
int rtn=0;
for(int i=cur[x];i&&maxf>rtn;i=nextedge[i])
{
int v=b[i],f=w[i];
if(Level[v]==Level[x]+1&&f)
{
f=Dfs(v,min(maxf-rtn,f));
w[i]-=f;w[i^1]+=f;
if(w[i]>0) cur[x]=i;
rtn+=f;
}
}
if(!rtn) Level[x]=0;
return rtn;
}
void Dinic()
{
while(Bfs())
{
for(int i=0;i<=T;i++) cur[i]=p[i];
ans-=Dfs(S,INF);
}
printf("%d\n",ans);
}
int main()
{
Input_Init();
Build_Graph();
Dinic();
return 0;
}

本文介绍了一种使用最小割算法解决宝石收集问题的方法。通过建立适当的图模型,利用黑白染色技巧来区分节点,并设置合理的边流量,最终通过Dinic算法找到最大流,从而确定能够收集到的最大宝石数量。
1443

被折叠的 条评论
为什么被折叠?



