【bzoj1010】[HNOI2008]玩具装箱toy

Portal

PS:为了证这个决策单调性。。推了我一张纸(蠢得要死,数学真的怀)!!!
n² 做法很容易:

dp[i]=min(dp[j]+(ij1+sum[i]sum[j]L)²
(20分)
f[i]=sum[i]+i,c=1+L;
显然 f[i] 单调递增
dp[i]=min(dp[j]+(f[i]f[j]c)²

决策单调性证明
k>j 且k的决策优于j的决策:

dp[k]+(f[i]f[k]c)²<=dp[j]+(f[i]f[j]c)²

那么对于i之后的所有状态t,需证决策k均比决策j优。
f[t]=f[i]+x;
只要证:
dp[k]+(f[i]+xf[k]c)²<=dp[j]+(f[i]+xf[j]c)²

将式子打开:
dp[k]+(f[i]f[k]c)²+2x(f[i]f[k]c)+x²<=dp[j]+(f[i]f[j]c)²+2x(f[i]f[k]c)+x²

已知
dp[k]+(f[i]f[k]c)²<=dp[j]+(f[i]f[j]c)²

∵k>j且f单调递增,所以
2x(f[i]f[k]c)<2x(f[i]f[j]c)

②+③ —>①
即得证。

斜率式

dp[k]+(f[i]f[k]c)²<=dp[j]+(f[i]f[j]c)²

dp[k]+f[i]²2f[i](f[k]+c)+(f[k]+c)²<dp[j]+f[i]²2f[i](f[k]+c)+(f[k]+c)²

移项可得:
2f[i]>=(dp[k]+(f[k]+c)²)(dp[j]+(f[j]+c)²)f[k]f[j]

单调队列维护一个下凸壳。

【代码】

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#define INF 1000000000001
#define mod 1000000007
#define N 300005
using namespace std;
typedef long long ll;

int read()
{
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
    while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return x*f;
}

int n,m,l,r;
ll f[N],sum[N];
int q[N];

ll SQR(ll x){
    return x*x;
}

double slope(int j,int k){
    return (double)(f[k]-f[j]+SQR(sum[k]+m+1)-SQR(sum[j]+m+1))/(2.0*(sum[k]-sum[j]));
}

int main()
{
    n=read(),m=read();
    for(register int i=1;i<=n;i++) sum[i]=sum[i-1]+read();
    for(register int i=1;i<=n;i++) sum[i]+=i;
    for(register int i=1;i<=n;i++)
    {
        while(l<r&&slope(q[l],q[l+1])<=sum[i]) l++;
        int t=q[l];
        f[i]=f[t]+SQR(sum[i]-sum[t]-m-1);
        while(l<r&&slope(q[r],i)<slope(q[r-1],q[r])) r--;
        q[++r]=i;
    }
    printf("%lld\n",f[n]);
    return 0;
}

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值