求01相间的最大子矩阵和最大子正方形。
其实就是求全0(1)矩阵的升级版。
做单调栈时加一点处理就好了。
【代码】
#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 2005
#define mod 10007
#define INF 0x7fffffff
using namespace std;
typedef long long ll;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int n,m,top,ans,Ans,Last;
int st[N],a[N][N],sum[N][N];
int l[N],r[N];
void Input_Init()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) a[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) sum[i][j]=a[i][j]!=a[i-1][j]?sum[i-1][j]+1:1;
}
void Humdrum_Stack(int k)
{
top=0;Last=1;
for(int i=1;i<=m;i++)
{
while(top&&sum[k][st[top]]>=sum[k][i]) top--;
if(a[k][i]==a[k][i-1]) l[i]=i,top=0,Last=i;
else l[i]=top==0?Last:st[top]+1;
st[++top]=i;
}
top=0;Last=m;
for(int i=m;i;i--)
{
while(top&&sum[k][st[top]]>=sum[k][i]) top--;
if(a[k][i]==a[k][i+1]) r[i]=i,top=0,Last=i;
else r[i]=top==0?Last:st[top]-1;
st[++top]=i;
}
for(int i=1;i<=m;i++)
{
ans=max(ans,(r[i]-l[i]+1)*sum[k][i]);
int len=min(r[i]-l[i]+1,sum[k][i]);
Ans=max(Ans,len*len);
}
}
void Solve()
{
for(int i=1;i<=n;i++)
Humdrum_Stack(i);
printf("%d\n%d\n",Ans,ans);
}
int main()
{
Input_Init();
Solve();
return 0;
}