BZOJ4597: [Shoi2016]随机序列

BZOJ4597

一开始看题一脸不可做的样子。。肯定又有什么鬼畜的结论 QAQ
(看看题解之后)。。和加减没什么关系。。维护一下前缀积的和就好了。
QAQ 然后自己拿 n=3 手写试了一发。。md为什么不自己想。。

ans=i=1n1(23ni1j=1iai)+j=1nai

线段树维护一下就好了嘛。。然后每次将 ax 修改为 y ,影响的只有xn的值,相当于每个地方乘上 yinvax

【代码】

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#define N 100005
#define Mod 1000000007
#define INF 200001
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ull base=31;

ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
    while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return x*f;
}

int n,m;
ll a[N],prod[N];
ll Inv[10004];

class Seg_Tree{
    public:
        int l,r;ll sum,tag;
}e[N<<2];

ll Qpow(ll x,int y)
{
    ll rtn=1;
    while(y>0) {
        if(y&1) rtn=rtn*x%Mod;
        x=x*x%Mod;y>>=1;
    }
    return rtn;
}

void pushup(int p){
    e[p].sum=(e[p<<1].sum+e[p<<1|1].sum)%Mod;
}

void pushdown(int p)
{
    ll t=e[p].tag;e[p].tag=1;
    e[p<<1].tag=e[p<<1].tag*t%Mod;
    e[p<<1|1].tag=e[p<<1|1].tag*t%Mod;
    e[p<<1].sum=e[p<<1].sum*t%Mod;
    e[p<<1|1].sum=e[p<<1|1].sum*t%Mod;
}

void Build(int p,int l,int r)
{
    e[p].l=l,e[p].r=r,e[p].tag=1;
    if(l==r) {
        e[p].sum=(l!=n)?1LL*2*prod[l]%Mod*Qpow(3,n-l-1)%Mod:prod[n];
        return;
    }
    int mid=l+r>>1;
    Build(p<<1,l,mid);Build(p<<1|1,mid+1,r);
    pushup(p);
} 

void Update(int p,int x,int y,ll z)
{
    int l=e[p].l,r=e[p].r,mid=l+r>>1;
    if(l==x&&y==r) {
        e[p].tag=e[p].tag*z%Mod;
        e[p].sum=e[p].sum*z%Mod;
        return;
    }
    if(e[p].tag!=1) pushdown(p);
    if(y<=mid) Update(p<<1,x,y,z);
    else if(x>mid) Update(p<<1|1,x,y,z);
    else Update(p<<1,x,mid,z),Update(p<<1|1,mid+1,y,z);
    pushup(p);
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    n=read(),m=read();Inv[1]=1;
    for(int i=1;i<=n;i++) a[i]=read();
    for(int i=2;i<=1e4;i++) 
        Inv[i]=(Mod-Mod/i)*Inv[Mod%i]%Mod;
    prod[0]=1;
    for(int i=1;i<=n;i++) prod[i]=a[i]*prod[i-1]%Mod;
    Build(1,1,n);
    for(int i=1;i<=m;i++)
    {
        static int pos;ll x;
        pos=read(),x=read();
        ll t=Inv[a[pos]]*x%Mod;a[pos]=x;
        Update(1,pos,n,t);
        printf("%lld\n",e[1].sum);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值