Stable-diffusion安装-windows-无显卡

  1. 克隆仓库
git clone https://ghproxy.com//https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

git clone git@github.com:AUTOMATIC1111/stable-diffusion-webui.git
  1. 创建虚拟环境,python版本建议按照官网推荐的,当前为3.10.6(这一步可以在vscode里操作)

  2. 安装依赖

pip install -r requirements.txt
  1. 运行
webui-user.bat 
# 需要在文件set COMMANDLINE_ARGS=这一行添加--skip-torch-cuda-test
#
# 或者也可以运行
webui --skip-torch-cuda-test

官方教程里是没有2和3的,但我感觉这样做成功率会高一点,另外万一装失败了,不会影响现有的环境

<think>嗯,用户问的是如何在50系显卡安装配置Stable Diffusion。首先,我得确认一下50系显卡的具体型号,比如NVIDIA的RTX 50系列可能还没发布,但用户可能指的是AMD的某个50系列?不过根据提供的引用内容,用户之前提到的是AMD显卡,比如Radeon RX 500系列?或者是NVIDIA的旧款比如GTX 50系列?不过现在常见的可能是AMD的RX 500系列,比如RX 580之类的。 首先,根据引用1和引用2,用户之前有在AMD显卡(比如核显)上安装Stable Diffusion的经验,而现在想换到50系显卡。需要明确50系显卡NVIDIA还是AMD的,但根据常见情况,可能用户指的是NVIDIA的GTX 50系列,比如GTX 1050之类的,或者AMD的RX 500系列。 如果是AMD显卡的话,安装步骤可能类似引用2中的AMD核显安装方式,需要配置ROCm或者使用DirectML。但如果是NVIDIA显卡,则需要安装CUDA和cuDNN。但用户提到的50系可能属于较旧的型号,比如GTX 1050,支持CUDA但可能兼容性需要注意。 接下来,我需要查看用户提供的引用内容是否有相关指导。引用1是CSDN上关于AMD显卡安装的教程,引用2是AMD核显的安装步骤。用户现在想换到50系显卡,可能属于不同的GPU品牌,因此可能需要不同的配置方法。 假设用户指的是NVIDIA的50系列显卡,比如GTX 1050,那么需要确认该显卡是否支持CUDA。GTX 1050支持CUDA,但可能需要安装特定版本的驱动和CUDA工具包。然后,在安装Stable Diffusion时,需要配置使用CUDA的版本,比如通过PyTorch的CUDA支持。 但用户可能混淆了显卡型号,或者有拼写错误。需要进一步确认,但根据现有信息,可能需要指导用户安装适合他们显卡的驱动和框架支持。例如,如果是NVIDIA显卡安装CUDA;如果是AMD,使用ROCm或DirectML。 根据引用2中的步骤,AMD核显安装需要配置Python环境、安装依赖库如onnxruntime-directml,并修改启动参数。对于不同的AMD显卡,可能需要类似的步骤,但如果是较新的AMD显卡,可能需要使用ROCm支持。 因此,回答需要分情况讨论:如果是NVIDIA显卡,则安装CUDA相关;如果是AMD显卡,则使用DirectML或ROCm。同时,需要提醒用户检查显卡型号和兼容性,安装正确的驱动,配置虚拟环境,调整启动参数等步骤。 此外,用户可能遇到问题,比如显存不足或兼容性错误,需要提供常见问题解决方法,比如降低批次大小,使用--medvram参数等。最后,建议用户参考社区资源或具体教程,根据显卡型号搜索更详细的指南。</think>根据现有资料和AMD显卡配置经验,在50系显卡(以AMD Radeon RX 500系列为例)安装Stable Diffusion的步骤如下: ### 一、环境准备 1. **安装Python 3.10.6** 需特别注意版本兼容性,建议通过[Python官网](https://www.python.org/downloads/)下载并勾选"Add to PATH"选项[^2] 2. **更新显卡驱动** 打开AMD Radeon Software控制面板,检查并安装最新驱动,确保支持DirectML或ROCm框架 ### 二、项目配置 ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui cd stable-diffusion-webui python -m venv venv source venv/bin/activate # Linux/macOS # 或 venv\Scripts\activate # Windows ``` ### 三、关键依赖安装 ```python # requirements.txt中添加特殊依赖 pip install torch-directml ``` 需修改`webui-user.bat`启动参数: ```bat set COMMANDLINE_ARGS=--use-directml --precision full --no-half ``` ### 四、模型部署 1. 下载标准模型(如v1-5-pruned-emaonly.ckpt)至`models/Stable-diffusion`目录 2. 推荐使用显存优化参数: ```bat set COMMANDLINE_ARGS=--medvram --opt-sub-quad-attention ``` ### 常见问题处理 | 问题现象 | 解决方案 | |---------|---------| | `Torch not compiled with CUDA` | 确认使用`torch-directml`而非CUDA版本 | | 显存不足 | 添加`--lowvram`参数或减小图像尺寸 | | 黑图输出 | 检查模型hash值,更新xformers库 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值