Description
给定一个n*m 的 01 矩阵,求包含[l,r]个 1 的子矩形个数。
Input
第一行,两个正整数n,m。
接下来n 行,每行一个长度为 m 的 01 串,表示给定的矩阵。接下来一行,两个自然数 l,r。
Output
第一行,一个整数代表答案。
Sample Input
见下发文件
Sample Output
见下发文件
Data Constraint
思路
考试的时候想漏了一点
因为n很小,所以我们可以在n上为所欲为。
用n^2枚举举证上下界,对于中间每一行t,维护两个值x,y,表示sum[x–t]
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=5e4+77;
int n,m,l,r;
long long a[40][maxn],sum[40][maxn],q[maxn],ans;
char s[maxn];
int main()
{
freopen("a.in","r",stdin); freopen("a.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
{
scanf("%s\n",s+1);
for(int j=1; j<=m; j++)
{
a[i][j]=s[j]-'0'; sum[i][j]=sum[i-1][j]+a[i][j];
}
}
scanf("%d%d",&l,&r);
for(int i=1; i<=n; i++) for(int j=i; j<=n; j++)
{
int x=0,y=0;
for(int k=1; k<=m; k++)
{
q[k]=q[k-1]+sum[j][k]-sum[i-1][k];
}
for(int k=1; k<=m; k++)
{
while(q[k]-q[x]>=l&&x<k) x++;
while(q[k]-q[y]>r&&y<k) y++;
ans+=1ll*x-1ll*y;
}
}
printf("%lld",ans);
}