Sereja and Table
题目描述:
这个题目讲述的是,输入一个n*m的01矩阵,题目让你最多改变k个单元格的数值,使这个01矩阵中所有0的连通块以及1的连通块恰好是一个矩阵,问最少要修改多少个数,如果不能满足题目条件的话,则输出-1。
题目分析:
首先,如果01矩阵中所有0的连通块以及1的连通块都是矩阵的话,那么其实可以确定01矩阵的每一行与下一行的关系,要么这两行的元素全部相等,要么就全部相反。
根据以上的结论,题目中给定的k最大不超过10,所以对于n小于等于k并且m小于等于k的情况下,01矩阵的第一行有可能为0到(1<<m)-1的所有状态中的一种,确定了第一行,接下来的n-1行就可以确定下来,求出所有状态中最少的修改次数,然后再与k进行比较输出答案。
对于n小于等于k并且m大于k的情况下,我们可以将这个01矩阵进行90度的翻转(翻转后并不影响答案),然后这个01矩阵就有m行n列,因为k最大不超过10,因此如果每一行至少都要修改一个元素的话,那么在这m行当中,必定存在某一行不发生改变,因此我们可以通过枚举哪一行不发生改变,然后确定其他行的元素,从而求出最少的修改次数。
对于n大于k并且m小于等于k以及n大于k并且m大于k的这两种情况,与上面的第二种情况类似,只是这两种情况不需要翻转,直接枚举哪一行不变,然后求出最少的修改次数就行了。
代码:
#include <iostream>
#include <cstdio>
#include <stdio.h>
#include <cstdlib>
#include <stdlib.h>
#include <cmath>
#include <math.h>
#include <algorithm>
#include <cstring>
#include <string>
#include <string.h>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <bitset>
#include <deque>
#define reg register
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define lowbit(x) (x&(-x))
using namespace std;
const int Maxn=105;
const int Maxm=105;
int n,m,k;
int a[Maxn][Maxm],b[Maxn][Maxm];
void solve1()
{
int ans=k+1;
for (reg int state=0;state<(1<<m);state++)
{
int cnt=0;
for (reg int i=1;i<=n;i++)
{
int num1=0,num2=0;
for (reg int j=1;j<=m;j++)
if (a[i][j]!=((state>>(j-1))&1)) num1++;else num2++;
cnt+=min(num1,num2);
}
ans=min(ans,cnt);
}
if (ans<=k) printf("%d\n",ans);else printf("-1\n");
}
void rotate()
{
for (reg int i=1;i<=n;i++)
{
for (reg int j=1;j<=m;j++) b[j][i]=a[i][j];
}
swap(n,m);
for (reg int i=1;i<=n;i++)
{
for (reg int j=1;j<=m;j++) a[i][j]=b[i][j];
}
}
void solve2()
{
int ans=k+1;
for (reg int choose=1;choose<=n;choose++)
{
int cnt=0;
for (reg int i=1;i<=n;i++)
{
if (i==choose) continue;
int num1=0,num2=0;
for (reg int j=1;j<=m;j++)
if (a[i][j]!=a[choose][j]) num1++;else num2++;
cnt+=min(num1,num2);
}
ans=min(ans,cnt);
}
if (ans<=k) printf("%d\n",ans);else printf("-1\n");
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for (reg int i=1;i<=n;i++)
{
for (reg int j=1;j<=m;j++) scanf("%d",&a[i][j]);
}
if (n<=k && m<=k)
{
solve1();
return 0;
}
if (n<=k) rotate();
solve2();
return 0;
}