Description
一年一度的高考结束了,我校要拍集体照。本届毕业生共分n个班,每个班的人数为Ai。这次拍集体照的要求非常奇怪:所有学生站一排,且相邻两个学生不能同班。现在,安排这次集体照的老师找到了你,想问问你一共有多少种方案。方案数可能很大,最终结果对1,000,000,007取模。
Input
输入文件名为photo.in。
第一行为为一个整数n。
第二行为n个正整数,分别为每个班的人数。
Output
输出文件photo.out,共1行,为总方案数。
Sample Input
输入1:
2
1 2
输入2:
2
1 3
输入3:
3
1 2 3
Sample Output
输出1:
2
输出2:
0
输出3:
120
Data Constraint
对于30%,Sigma(Ai) <=10
对于另外10%,n=2
对于另外20%,n=3
对于100%,1<=n<=50,1<=Ai<=50, Sigma(Ai)<=1500
思路
设f[i][j]为枚举到第i个班,有j对同班相邻的方案数。
可以发现这就是在一些地方插板。
可以形象的理解为:选x个位置,插y个板。
所以转移就一目了然啦
代码
#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define N 60
#define M 1510
#define mo 1000000007
using namespace std;
int n;
ll a[N],sum[N],f[N][M],jc[M],c[M][M],ans;
int main()
{
freopen("photo.in","r",stdin); freopen("photo.out","w",stdout);
scanf("%d",&n);
for(int i=1; i<=n; i++) scanf("%lld",&a[i]),sum[i]=sum[i-1]+a[i];
jc[0]=c[0][0]=1; for(int i=1; i<=1500; i++) jc[i]=jc[i-1]*i%mo;
for(int i=1; i<=1500; i++)
{
c[i][0]=c[i][i]=1;
for(int j=1; j<=i-1; j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%mo;
}
f[1][sum[1]-1]=1;
for(int i=2; i<=n; i++)
for(int j=0; j<=sum[i-1]; j++)
if(f[i-1][j])
for(int k=1; k<=a[i]; k++)
for(int p=0; p<=min(k,j); p++)
(f[i][j-p+a[i]-k]+=f[i-1][j]*c[j][p]%mo*c[a[i]-1][k-1]%mo*c[sum[i-1]+1-j][k-p]%mo)%=mo;
ans=f[n][0];
for(int i=1; i<=n; i++) ans=ans*jc[a[i]]%mo;
printf("%lld",ans);
}