【JZOJ A组】集体照

Description

一年一度的高考结束了,我校要拍集体照。本届毕业生共分n个班,每个班的人数为Ai。这次拍集体照的要求非常奇怪:所有学生站一排,且相邻两个学生不能同班。现在,安排这次集体照的老师找到了你,想问问你一共有多少种方案。方案数可能很大,最终结果对1,000,000,007取模。

Input

输入文件名为photo.in
第一行为为一个整数n。
第二行为n个正整数,分别为每个班的人数。

Output

输出文件photo.out,共1行,为总方案数。

Sample Input

输入1:
2
1 2
输入2:
2
1 3
输入3:
3
1 2 3

Sample Output

输出1:
2
输出2:
0
输出3:
120

Data Constraint

对于30%,Sigma(Ai) <=10
对于另外10%,n=2
对于另外20%,n=3
对于100%,1<=n<=50,1<=Ai<=50, Sigma(Ai)<=1500

思路

设f[i][j]为枚举到第i个班,有j对同班相邻的方案数。
可以发现这就是在一些地方插板。

可以形象的理解为:选x个位置,插y个板。
所以转移就一目了然啦

代码

#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define N 60
#define M 1510
#define mo 1000000007
using namespace std;
int n;
ll a[N],sum[N],f[N][M],jc[M],c[M][M],ans;
int main()
{
	freopen("photo.in","r",stdin); freopen("photo.out","w",stdout); 
	scanf("%d",&n);
	for(int i=1; i<=n; i++) scanf("%lld",&a[i]),sum[i]=sum[i-1]+a[i];
	jc[0]=c[0][0]=1; for(int i=1; i<=1500; i++) jc[i]=jc[i-1]*i%mo;
	for(int i=1; i<=1500; i++)
	{
		c[i][0]=c[i][i]=1;
		for(int j=1; j<=i-1; j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%mo;
	}
	f[1][sum[1]-1]=1;
	for(int i=2; i<=n; i++)
		for(int j=0; j<=sum[i-1]; j++)
			if(f[i-1][j])
				for(int k=1; k<=a[i]; k++)
					for(int p=0; p<=min(k,j); p++)
						(f[i][j-p+a[i]-k]+=f[i-1][j]*c[j][p]%mo*c[a[i]-1][k-1]%mo*c[sum[i-1]+1-j][k-p]%mo)%=mo;
	ans=f[n][0];
	for(int i=1; i<=n; i++) ans=ans*jc[a[i]]%mo;
	printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值