题意:
给出一个n*m的棋盘,问曼哈顿距离为奇数的两个格子不同颜色的情况下,用k种颜色涂棋盘有多少种方案,注意可以不用完k种颜色。
思路:
曼哈顿距离为奇数的限制条件把棋盘分割成了两部分,一部分和(0,0)可以相同颜色,另一部分不行。那么我们直接分开涂色,这样就没有限制条件了。
dp[i][j]表示i个格子恰好用j种颜色的方案数。再将k种颜色分配到两个部分的情况枚举一下求和即可。
代码:
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <map>
#include <list>
#include <set>
#include <stack>
#include <queue>
#include <string>
#include <sstream>
#define pb push_back
#define X first
#define Y second
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define pii pair<int,int>
#define qclear(a) while(!a.empty())a.pop();
#define lowbit(x) (x&-x)
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define mst(a,b) memset(a,b,sizeof(a))
#define cout3(x,y,z) cout<<x<<" "<<y<<" "<<z<<endl
#define cout2(x,y) cout<<x<<" "<<y<<endl
#define cout1(x) cout<<x<<endl
#define IOS std::ios::sync_with_stdio(false)
#define SRAND srand((unsigned int)(time(0)))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;
using namespace std;
const double PI=acos(-1.0);
const int INF=0x3f3f3f3f;
const ll INFF=0x3f3f3f3f3f3f3f3f;
const ll mod=1000000007;
const double eps=1e-5;
const int maxn=2005;
const int maxm=20005;
const int base=27;
int t;
int n,m,k;
int C[55][55];
int dp[205][55];
void solve() {
mst(C,0);
C[1][0]=1;
C[1][1]=1;
for(int i=2;i<=50;i++){
C[i][0]=C[i][i]=1;
for(int j=1;j<i;j++){
C[i][j]=((ll)C[i-1][j]+C[i-1][j-1])%mod;
}
}
mst(dp,0);
for(int i=1;i<=200;i++){
dp[i][1]=1;
for(int j=2;j<=50;j++){
dp[i][j]=((ll)dp[i-1][j]*j%mod+(ll)dp[i-1][j-1]*j%mod)%mod;
}
}
sd(t);
for(int kase=1;kase<=t;kase++){
sddd(n,m,k);
int now,a,b;
now=(n+1)*(m+1);
a=now/2;
b=now-a;
ll ans=0;
for(int i=1;i<k;i++){
for(int j=1;j<k;j++){
if(i+j>k)continue;
ans=(ans+((ll)dp[a][i]*C[k][i]%mod*dp[b][j]%mod*C[k-i][j]%mod))%mod;
}
}
if(now==1)ans=k;
printf("Case %d: %lld\n",kase,ans);
}
return ;
}
int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
#else
// freopen("","r",stdin);
// freopen("","w",stdout);
#endif
solve();
return 0;
}