894. All Possible Full Binary Trees**
https://leetcode.com/problems/all-possible-full-binary-trees/
题目描述
A full binary tree is a binary tree where each node has exactly 0
or 2
children.
Return a list of all possible full binary trees with N
nodes. Each element of the answer is the root node of one possible tree.
Each node
of each tree in the answer must have node.val = 0
.
You may return the final list of trees in any order.
Example 1:
Input: 7
Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
Explanation:
Note:
1 <= N <= 20
C++ 实现 1
基本思路是, 先构建左子树, 再构建右子树, 最后利用根节点连接两棵子树. 需要注意的是, 要生成 full binary tree, 元素个数必须是奇数. 递归到底的情况是, 当输入 N = 1
时. 另外注意到下面代码中, 随着 i
增大, N - 1 - i
可能已经访问过, 为了避免重复访问, 在 C++ 实现 2
引入了额外的空间保存已经得到结果, 可以加快一些速度.
class Solution {
public:
vector<TreeNode*> allPossibleFBT(int N) {
if (N % 2 == 0) return {};
if (N == 1) return {new TreeNode(0)};
vector<TreeNode*> res;
// i 从 1 开始, 是因为根节点用去了一个节点, 剩下 N - 1 个节点
for (int i = 1; i <= N - 1; i += 2) {
if (N - 1 - i >= 1) {
auto left_candidates = allPossibleFBT(i);
auto right_candidates = allPossibleFBT(N - 1 - i);
for (auto &l : left_candidates) {
for (auto &r : right_candidates) {
TreeNode *root = new TreeNode(0);
root->left = l;
root->right = r;
res.push_back(root);
}
}
}
}
return res;
}
};
C++ 实现 2
在 C++ 实现 1
代码的基础上, 引入哈希表, 保存已经访问过的结果.
class Solution {
private:
unordered_map<int, vector<TreeNode*>> record;
public:
vector<TreeNode*> allPossibleFBT(int N) {
if (N % 2 == 0) return {};
if (!record.count(N)) {
if (N == 1) return record[N] = {new TreeNode(0)};
vector<TreeNode*> res;
for (int i = 1; i <= N - 1; i += 2) {
if (N - 1 - i >= 1) {
auto left_candidates = allPossibleFBT(i);
auto right_candidates = allPossibleFBT(N - 1 - i);
for (auto &l : left_candidates) {
for (auto &r : right_candidates) {
TreeNode *root = new TreeNode(0);
root->left = l;
root->right = r;
res.push_back(root);
}
}
}
}
record[N] = res;
}
return record[N];
}
};