HDU-1210 洗牌问题

Eddy's 洗牌问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5139    Accepted Submission(s): 3424


Problem Description
Eddy是个ACMer,他不仅喜欢做ACM题,而且对于纸牌也有一定的研究,他在无聊时研究发现,如果他有2N张牌,编号为1,2,3..n,n+1,..2n。这也是最初的牌的顺序。通过一次洗牌可以把牌的序列变为n+1,1,n+2,2,n+3,3,n+4,4..2n,n。那么可以证明,对于任意自然数N,都可以在经过M次洗牌后第一次重新得到初始的顺序。编程对于小于100000的自然数N,求出M的值。
 

Input
每行一个整数N
 

Output
输出与之对应的M
 

Sample Input
 
 
20 1
 

Sample Output
 
 
20 2
 


题解:这是道找规律的题,只要1回到起始位置,那么其他的数都会回到起始位置。那么问题就变成了需要洗几次牌使得1回到位置1了,对于1位置的变化有如下规律:

对于1的位置k:

1.如果1的位置小于等于N,那么1的下一个位置为2 * k。

2.如果1的位置大于N,那么1的下一个位置为(k - N) * 2 - 1。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int maxn = 1e5 + 5;

int main()
{
    int N;
    int ans;
    int k;
    while(scanf("%d",&N) != EOF)
    {
        ans = 0;
        k = 1;
        k *= 2;
        ans++;
        while(k != 1)
        {
            if(k <= N)
            {
                k *= 2;
            }
            else
            {
                k = (k - N) * 2 - 1;
            }
            ans++;
        }
        printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值