java 中 ReentrantReadWriteLock的读锁和写锁的使用

jdk文档中关于ReentrantReadWriteLock类使用的一个很好的例子,以下是具体的介绍:
 
 在使用某些种类的 Collection 时,可以使用 ReentrantReadWriteLock 来提高并发性。通常,在预期 collection很大,读取者线程访问它的次数多于写入者线程,并且 entail 操作的开销高于同步开销时,这很值得一试。例如,以下
 是一个使用 TreeMap 的类,预期它很大,并且能被同时访问。  

 

两种锁机制:

1、synchronized

2、ReentrantLock

     ReentrantLock是jdk5的新特性,采用ReentrantLock可以完全替代替换synchronized传统的锁机制,而且采用ReentrantLock的方式更加面向对象,也更加灵活,网上有很多关于对比两者锁方式的文章。


 
 读写锁:ReadWriteLock
 
       在多线程的环境下,对同一份数据进行读写,会涉及到线程安全的问题。比如在一个线程读取数据的时候,另外一个线程在写数据,而导致前后数据的不一致性;一个线程在写数据的时候,另一个线程也在写,同样也会导致线程前后看到的数据的不一致性。
 
       这时候可以在读写方法中加入互斥锁,任何时候只能允许一个线程的一个读或写操作,而不允许其他线程的读或写操作,这样是可以解决这样以上的问题,但是效率却大打折扣了。因为在真实的业务场景中,一份数据,读取数据的操作次数通常高于写入数据的操作,而线程与线程间的读读操作是不涉及到线程安全的问题,没有必要加入互斥锁,只要在读-写,写-写期 间上锁就行了。
 
 对于这种情况,读写锁则最好的解决方案!
 
 读写锁的机制:
   "读-读"不互斥
   "读-写"互斥
   "写-写"互斥
 
 即在任何时候必须保证:
   只有一个线程在写入;
   线程正在读取的时候,写入操作等待;
   线程正在写入的时候,其他线程的写入操作和读取操作都要等待;
 
 以下是一个缓存类:用于演示读写锁的操作:重入、降级。

 

 

package com.etrip.concurrent.locks;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 *
 *
 * 两种互斥锁机制:

1、synchronized

2、ReentrantLock

ReentrantLock是jdk5的新特性,采用ReentrantLock可以完全替代替换synchronized传统的锁机制,而且采用ReentrantLock的方式更加面向对象,也更加灵活,网上有很多关于对比两者锁方式的文章,这里就不多口舌了,大家baidu、google一下就水落石出了。在本博客中也写关于这两种锁方式实现的经典例子《生产者消费者》。


 *@author longgangbai
 */
public class CachedData {
 
 // 缓存都应该是单例的,在这里用单例模式设计:
 private static CachedData cachedData = new CachedData();
 private final ReadWriteLock lock = new ReentrantReadWriteLock();//读写锁
 private Map<String, Object> cache = new HashMap<String, Object>();//缓存
 
 private CachedData(){
 }
 
 public static CachedData getInstance(){
  return cachedData;
 }
 
 // 读取缓存:
 public Object read(String key) {
  lock.readLock().lock();
  Object obj = null;
  try {
   obj = cache.get(key);
   if (obj == null) {
    lock.readLock().unlock();
    // 在这里的时候,其他的线程有可能获取到锁
    lock.writeLock().lock();
    try {
     if (obj == null) {
      obj = "查找数据库"; // 实际动作是查找数据库
      // 把数据更新到缓存中:
      cache.put(key, obj);
     }
    } finally {
     // 当前线程在获取到写锁的过程中,可以获取到读锁,这叫锁的重入,然后导致了写锁的降级,称为降级锁。
     // 利用重入可以将写锁降级,但只能在当前线程保持的所有写入锁都已经释放后,才允许重入 reader使用
     // 它们。所以在重入的过程中,其他的线程不会有获取到锁的机会(这样做的好处)。试想,先释放写锁,在
     // 上读锁,这样做有什么弊端?--如果这样做,那么在释放写锁后,在得到读锁前,有可能被其他线程打断。
     // 重入————>降级锁的步骤:先获取写入锁,然后获取读取锁,最后释放写入锁(重点)
     lock.readLock().lock();
     lock.writeLock().unlock();
    }
   }
  } finally {
   lock.readLock().unlock();
  }
  return obj;
 }
}

 

 

以下是读写锁的应用:

class RWDictionary {

 private final Map<String, String> map = new TreeMap<String, String>();
 private final ReadWriteLock rwl = new ReentrantReadWriteLock();
 private final Lock readLock = rwl.readLock();
 private final Lock writeLock = rwl.writeLock();

 {
   map.put("EN", "英国");
     map.put("CA", "加拿大");
     map.put("FR", "法国");
     map.put("CN", "中国");
 }
 
 
 public String get(String key) {
  readLock.lock();
  try {
   return map.get(key);
  } finally {
   readLock.unlock();
  }
 }

 public String[] allKeys() {
  readLock.lock();
  try {
   return (String[]) map.keySet().toArray();
  } finally {
   readLock.unlock();
  }
 }

 public String put(String key, String value) {
  writeLock.lock();
  try {
   return map.put(key, value);
  } finally {
   writeLock.unlock();
  }
 }

 public void clear() {
  writeLock.lock();
  try {
   map.clear();
  } finally {
   writeLock.unlock();
  }
 }
}

 

public class RWDictionaryTest {
    public static void main(String[] args) {
     
      RWDictionary rw=new RWDictionary();
      String value =rw.get("CN");
      System.out.println("value ="+value );
     
     
      Map<String, String> map = new TreeMap<String, String>();
      map.put("EN", "英国");
      map.put("CA", "加拿大");
      map.put("FR", "法国");
      map.put("CN", "中国");
     //Collections.synchronizedMap用法如下
       Map<String, String> m = Collections.synchronizedMap(map);
       Set<String> s = m.keySet();  // Needn't be in synchronized block
        synchronized(m) {  // Synchronizing on m, not s!
            Iterator<String> i = s.iterator(); // Must be in synchronized block
            while (i.hasNext()){
             RWDictionaryTest.foo(i.next());
            }
        }
 }
   
    public static void foo(String str){
     System.out.println(" "+ str+" ");
    }
}

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值