二分法求方程2x^3-x ^2+3x-6=0在(-10,10)之间的根

二分法求方程2x^3-x ^2+3x-6=0在(-10,10)之间的根

  • 核心思想是零点定理在区间[a,b]上连续不断且f(a)*f(b)<0的函数f(x),由零点定理,将函数f(x)零点所在的区间二分,使端点a,b逼近零点,得到近似值的方法称为二分法

在这里插入图片描述

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

//二分法求方程2x^3-4x^2+3x-6=0在(-10,10)之间的根

double func(double x)
{
	double ret;
	ret = 2 * x * x * x - 4 * x * x + 3 * x - 6;
	return ret;
}
int main()
{
	double x1, x2, x, y1, y2, y;
	printf("请输入左右端点:\n");
	scanf("%lf%lf", &x1, &x2);
	y1 = func(x1);
	y2 = func(x2);
	x = (x2 + x1) / 2;
	y = func(x);
	//while (y1 * y2 < 0 && fabs(x2-x1)>= 1e-6 )
	while (y1 * y2 < 0 )
	{
		x = (x2 + x1) / 2;
		y = func(x);
		if (y*y1<0)
		{
			x2 = x;
			y2 = y;
		}
		else if (y*y2<0)
		{
			x1 = x;
			y1 = y;
		}
		else if(0==y)
		{
			break;
		}
	}
	printf("根的值为:%5.2lf\n", x);
	system("pause");
	return 0;
}
### 回答1: 为了使用拟牛顿法方程组,首先需要解决两个问题: 1. 如何表示方程组? 2. 如何计算方程组的雅可比矩阵? 首先,在 MATLAB 中表示方程组的形式为:F(x)=0,其中 x 是列向量,F(x) 是向量函数。对于上述方程组,可以将 x 和 y 分别表示为 x1 和 x2,得到如下表示方法: F(x) = [ x1^2 - 2*x2^2 - 2; x1^2 - x2 ] 然后,可以使用如下 MATLAB 代码计算方程组的雅可比矩阵: J = jacobian(F,x) 其中,F 是方程组的表示,x 是列向量。 最后,可以使用以下代码使用拟牛顿法方程组: x = fsolve(F,x0,options) 其中,x0 是初始猜测的解的列向量,options 是一个用于设置解器的选项结构体。 注意:上述代码假设已经在工作区中定义了 F 和 x,并且已经计算方程组的雅可比矩阵。 ### 回答2: 拟Newton法是一种寻找非线性方程组的数值解的迭代方法。对于给定的方程组x²+2y²-2=0和x²=y,我们可以用拟Newton法来在(0.8,0.7)附近的。 首先,我们需要构造一个迭代公式。假设(x_n,y_n)是第n次迭代的近似,我们可以据牛顿法的思想来更新近似解。对于方程组中的每个方程,我们可以计算方程对x和y的偏导数。然后,我们可以利用雅可比矩阵的逆来更新近似解。 具体来说,我们可以将方程组表示为F(x,y)=0的形式,其中F(x,y)=[x²+2y²-2,x²-y]。雅可比矩阵J(x,y)是F(x,y)对(x,y)的偏导数矩阵。我们可以通过公式J(x,y)=[2x, 4y; 2x, -1]计算雅可比矩阵。 然后,我们可以据以下迭代公式来更新近似解: (x_(n+1),y_(n+1)) = (x_n,y_n) - J^(-1)(x_n,y_n) * F(x_n,y_n), 其中J^(-1)(x_n,y_n)表示雅可比矩阵的逆。 我们可以选择一个足够小的误差值作为迭代停止的条件,例如0.001。当迭代过程中计算的F(x_n,y_n)的范数小于误差值时,我们可以认为近似解已经足够接近真实解,并且迭代停止。 具体实现这个算法可以使用MATLAB编程语言。以下是该算法的MATLAB代码: ```matlab % 初始化近似解 x0 = 0.8; y0 = 0.7; % 定义误差值 epsilon = 0.001; % 定义迭代次数上限 max_iter = 100; for i = 1:max_iter % 计算F(x_n, y_n) F = [x0^2 + 2*y0^2 - 2; x0^2 - y0]; % 计算雅可比矩阵J(x_n, y_n) J = [2*x0, 4*y0; 2*x0, -1]; % 计算雅可比矩阵的逆J^(-1) J_inv = inv(J); % 更新近似解 delta = J_inv * F; x_new = x0 - delta(1); y_new = y0 - delta(2); % 判断迭代停止条件 if norm(F) < epsilon break; end % 更新迭代变量 x0 = x_new; y0 = y_new; end % 输结果 x_root = x_new; y_root = y_new; fprintf('方程组的为:(%.4f, %.4f)\n', x_root, y_root); ``` 这样,我们就可以得到在(0.8,0.7)附近的方程组的。(注意:该代码仅为参考,具体实现方式可能会有所不同。) ### 回答3: 拟Newton法是一种非常常用的方程组的数值算法,在MATLAB中可以通过编程实现。据题目给方程组为x² - 2y² - 2 = 0和x² = y,我们可以将其转化为一个二元函数的问题。 首先,我们需要构造一个函数来表示方程组,例如f(x, y) = x² - 2y² - 2和g(x, y) = x² - y。 接下来,我们据拟Newton法的迭代公式进行计算,迭代公式为: x(k+1) = x(k) - J^(-1)(x(k), y(k)) * F(x(k), y(k)) y(k+1) = y(k) - J^(-1)(x(k), y(k)) * G(x(k), y(k)) 其中,J(x, y)表示雅可比矩阵,F(x, y)表示f(x, y)的函数值,G(x, y)表示g(x, y)的函数值。k表示迭代的次数。 最后,我们初始化x(0) = 0.8,y(0) = 0.7,并设置迭代的终止条件。当满足终止条件时,输x和y的值作为方程组的近似。 具体编程如下: ```matlab function [x, y] = newton_method() x = 0.8; % 初始化x y = 0.7; % 初始化y max_iter = 100; % 最大迭代次数 tol = 1e-6; % 迭代终止条件 for i = 1:max_iter F = x^2 - 2*y^2 - 2; G = x^2 - y; J11 = 2*x; J12 = -4*y; J21 = 2*x; J22 = -1; J = [J11, J12; J21, J22]; delta = inv(J) * [F; G]; x = x - delta(1); % 更新x y = y - delta(2); % 更新y if norm(delta) < tol break; % 达到迭代终止条件 end end disp(['x = ', num2str(x)]); disp(['y = ', num2str(y)]); end ``` 通过调用newton_method函数即可方程组在(0.8, 0.7)附近的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值