Leetcode基础题:深度优先搜索

本文详细解析了深度优先搜索在LeetCode中解决二叉树问题的应用,包括相同的树、翻转二叉树、二叉树的最大深度、最小深度等。通过递归和迭代的方式探讨了如何进行深度优先搜索,并特别强调了尾递归优化在减少计算开销中的作用。
摘要由CSDN通过智能技术生成
以下是深度优先搜索的伪代码:
class Solution {
   
public:
	bool visited[MAX_VERTEX_NUM];//设置该数组防止重复访问
	void DFSTraverse(Grapg G){
   //外层封装,也可以拆开不用
		for(v=0;v<G.vexnum;v++)
			visited[v]=false;//标记为没有访问
		for(v=0;v<G.vexnum;v++)
			if(!visited [v])
				DFS(G,v);		
	}

	void DFS(Grapg G, int v){
   
		visit(v);
		visited[v]=true;//访问并标记当前节点,对于二叉树结构可以不用这个标记
		for(w=neighbour(G,v);w>0;w=nextneighbour){
   //遍历每个邻居,递归进行访问
		//使用递归的算法形式,重点在于列出贝尔曼方程
			if(!visited[w])
				DFS(G,w);
		}
	}
}
//树本身是根递归定义的,每个子结点(包括叶子结点)都可以看做是一棵子树的根
//因此根遍历一定是可以遍历到每个结点代表的迷你子树的,这也决定了递归遍历的形式简单性
//由于树的递归性质,很多问题可以采取减治法解决,将问题范围缩小为左子树和右子树

点击题目标题可以转到相应页面

100. 相同的树

class Solution {
   
public:
    bool isSameTree(TreeNode* p, TreeNode* q) {
   
        if(p==nullptr&&q==nullptr)
            return true;
        else if(p==nullptr||q==nullptr)
            return false;
        else if(p->val!=q->val)//前三个条件判断是访问当前结点,后一个则是深度搜索遍历
            return false;
        else return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
		//else return isSameTree(p->left, q->right) && isSameTree(p->right, q->left);
		//将左右指针交换后可以检查两棵树是否成镜像
    }
};

226. 翻转二叉树
解析:一样的遍历方式,不过这次的访问形式为交换结点

class Solution {
   
public:
    TreeNode* invertTree(TreeNode* root) {
   
        if(root!=nullptr) {
   
            //交换结点,无论是否为空都可以
            TreeNode* tmp = root->right;
            root->right = root->left;
            root->left = tmp;
            inv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值