首先,要求的是方案数,不要黑白染色(
b
r
u
t
e
f
o
r
c
e
\frak{brute force}
bruteforce的重复计算太多了。应该按行列处理。
状压
很容易想到逐行/列判断,对于当前这一行暴力枚举所有状态然后再判断可行转移
一个小优化是预处理在不考虑地图情况下的可行方案
p
s
.
\frak{ps.}
ps.这道题在洛谷上的数据有点水
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<queue>
#include<cctype>
using namespace std;
int t; //* bool不能当作int读入
bool c;
int N,M,Lim;
long long ans=0;
int A[15]={};
int L[5000]={};
long long F[2][5000]={};
const long long MOD=100000000;
int main()
{
scanf("%d%d",&N,&M);
Lim=(1<<M)-1; L[++L[0]]=0;
for(int i=1;i<=Lim;++i)
{
if(((i>>1)&i)||((i<<1)&i))continue;
L[++L[0]]=i;
}
for(int i=1;i<=N;++i)
{
c=(i&1);
for(int j=1;j<=L[0];++j)F[c][j]=0;
for(int j=1;j<=M;++j)
{
scanf("%d",&t);
if(t)continue;
A[i]|=1<<j-1;
}
for(int j=1;j<=L[0];++j)
{
if(L[j]&A[i])continue;
if(i==1)F[1][j]=1;
else for(int k=1;k<=L[0];++k)
{
if(L[k]&L[j])continue;
F[c][j]+=F[!c][k];
F[c][j]%=MOD;
}
}
}
for(int i=1;i<=L[0];++i)ans+=F[c][i],ans%=MOD;
printf("%lld",ans);
return 0;
}
轮廓线
并没有写
.
j
p
g
\frak{.jpg}
.jpg
构造轮廓挺简单的,具体做法可以参考洛谷题解