免费馅饼
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0
Sample Output
4
问题分析
感觉和POJ 1163差不多是一样的题23333……
大致题意就是有长度为11,坐标从0->10的一条路上从天上往下掉免费馅饼啦~~,现在你处在5点处,一秒只能走一个单位,在某些时间段里会往下掉馅饼,问最后最多能接到多少馅饼呢?(同一秒同一点可能掉多个馅饼)我们可以把它想象成一个二维去做,时间为行,地点为列。因此定义一个二维数组去读数据。
for(int i = 1; i <= n; i++)
{
scanf("%d %d",&x,&t);
dp[t][x]++; //可能同一个地点有多个馅饼
maxT = max(maxT,t);//每过一秒走一步,就一共有多少层
}
这样我们就把所有馅饼填到二维数组里面啦,具体思路和POJ 1163是差不多一样滴从底层一层一层往上递推,每次可以朝三个方向走,(i+1,j-1),(i+1,j+1),(i+1,j),一直到顶部dp[0][5]。(poj 1163链接在上面喔,点一下就可以)
状态转移方程为dp[i][j] = max(dp[i+1][j-1],max(dp[i+1][j],dp[i+1][j+1]);
好,上AC code~(^_^)
#include<algorithm>
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N = 1e5+7;
int n, dp[N][12];
int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%d",&n),n)
{
memset(dp,0,sizeof(dp));
int x,t, maxT = -1e8;
for(int i = 1; i <= n; i++)
{
scanf("%d %d",&x,&t);
dp[t][x]++;
maxT = max(maxT,t);
}
for(int i = maxT-1; i >= 0; i--)
{
for(int j = 0; j <= 10; j++)
{
dp[i][j] += max(dp[i+1][j-1],max(dp[i+1][j],dp[i+1][j+1]));
}
}
printf("%d\n",dp[0][5]);
}
return 0;
}