洛谷P1080 国王游戏(贪心)

32 篇文章 0 订阅
18 篇文章 0 订阅

P1080 国王游戏

题解:首先考虑相邻的两个大臣该如何排列。如果 i i i排在 j j j前面需要满足 a i ⋅ p r e b j &lt; a j ⋅ p r e b i \frac{a_i \cdot pre}{b_j} &lt;\frac{a_j \cdot pre}{b_i} bjaipre<biajpre,显然 a i ⋅ b i &lt; a j ⋅ b j a_i \cdot b_i &lt; a_j \cdot b_j aibi<ajbj然后因为交换相邻的两个大臣并不会对整个序列的前后有影响,所以我们可以考虑冒泡排序,以 a i ⋅ b i &lt; a j ⋅ b j a_i \cdot b_i &lt; a_j \cdot b_j aibi<ajbj进行排序,但是明显冒泡太慢了,所以需要快排。最后的枚举一下即可。

import java.util.Scanner;
import java.util.Comparator;
import java.math.BigInteger;
import java.util.Arrays;
class Minister{
    private int left,right;

    public Minister(int x,int y) {
        this.left = x;
        this.right = y;
    }

    public int getLeft() {
        return this.left;
    }

    public int getRight() {
        return this.right;
    }
}

public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        Minister[] ministers = new Minister[n + 1];
        for(int i = 0; i <= n; ++i) {
            ministers[i] = new Minister(in.nextInt(),in.nextInt());
        }
        Arrays.sort(ministers, 1, n + 1, new Comparator<Minister>() {
            @Override
            public int compare(Minister o1, Minister o2) {
                return o1.getLeft() * o1.getRight() - o2.getLeft() * o2.getRight();
            }
        });
        BigInteger emper = new BigInteger(ministers[0].getLeft() + "");
        BigInteger max = BigInteger.ZERO;
        for(int i = 1; i <= n; ++i) {
            BigInteger t = emper.divide(new BigInteger(ministers[i].getRight() + ""));
            if(t.compareTo(max) > 0) {
                max = t;
            }
            emper = emper.multiply(new BigInteger(ministers[i].getLeft() + ""));
        }
        System.out.println(max);
        in.close();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值