DAR-Net: Dynamic Aggregation Network for Semantic Scene Segmentation[Arxiv]

DAR-Net是一种新型的深度学习网络,专为语义场景分割设计,通过自适应地学习点云的skeleton,结合局部几何特征,实现动态特征聚合。网络首先学习skeleton布局,然后将点云的局部特征聚合到skeleton节点,再通过全局神经网络处理,获取远程信息,并最终进行语义预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述[论文链接]
\qquad 这篇文章中作者提出了一个支持动态特征聚合的网络DAR-NetDAR-Net的核心思想是生成一个自适应的pooling skeleton,这个结构既考虑了场景的复杂结构也结合了局部几何特征。skeleton提供可变的半局部感受野和权重,成为了连接局部卷积特征提取器和全局循环特征聚合器的桥梁。
在这里插入图片描述
\qquad skeleton如上图所示,我的理解所谓skeleton就是一些能够反映点云集合特征的keypoint。
在这里插入图片描述
\qquad 网络的pipeline如上图所示,首先根据点云无监督、自适应地学习skeleton,使其合理分布在点云中。这个过程作用类似于从下图的a到b(node个数应人为指定)。
在这里插入图片描述
\qquad 然后从点云中学习局部的逐点特征,编码后的局部特征被动态地聚合到骨架中,作为信息抽象的中间尺度,得到node-wise的特征。

\qquad 定义 P N = { p i ∣ 0 < i ≤ N } P_N=\{p_i|0<i\leq N\} PN={ pi0<iN}为点云, S M = { s j ∣ 0 < j ≤ M } S_M=\{s_j|0<j\leq M\} SM={ sj0<jM}为pooling skeleton。 F a g g − i F^{agg-i} Faggi为pointwise特征空间, F a g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值