5.1 距离盘被
5.1.1 2个总体的距离判别
最常见的是欧氏距离
,d(x,y)=sqrt(Σ(x-y)^2)
。
但是由判别分析中采用欧氏距离不合适,因为没有考虑总体分布的分散性信息,通常采用的是马氏距离
5.1.2 判别准则的评价
1.误判率回代估计法
设G1、G2为两个总体,x1和x2分别是来自G1和G2的训练样本,
其容量分别是n1和n2,
以全体训练样本你作为n1+n2个新样品
逐个代入已建立的判别准则中判别其归属,这个过程称为回判
其中:
n11
:实际属于G1,归为G1
n12
:实际属于G1,归为G2
n21
:实际属于G2,归为G1
n22
:实际属于G2,归为G2
SO:
误判率的回代估计
=(n12+n21)/(n1+n2)
由于该值是建立判别函数的数据又用于评估,所以比真实误判率小。