数据分析方法——判别分析

本文介绍了数据分析中的距离判别方法,特别是针对2个总体的距离判别,指出欧氏距离的不足,并探讨了判别准则的评价,包括误判率回代估计法和交叉确认估计法。此外,还提到了多个总体的距离判别,以及Bayes判别的应用。
摘要由CSDN通过智能技术生成

5.1 距离盘被

5.1.1 2个总体的距离判别

最常见的是欧氏距离,d(x,y)=sqrt(Σ(x-y)^2)
但是由判别分析中采用欧氏距离不合适,因为没有考虑总体分布的分散性信息,通常采用的是马氏距离

5.1.2 判别准则的评价
1.误判率回代估计法
设G1、G2为两个总体,x1和x2分别是来自G1和G2的训练样本,
其容量分别是n1和n2,
以全体训练样本你作为n1+n2个新样品
逐个代入已建立的判别准则中判别其归属,这个过程称为回判

在这里插入图片描述
其中:
n11:实际属于G1,归为G1
n12:实际属于G1,归为G2
n21:实际属于G2,归为G1
n22:实际属于G2,归为G2
SO:
误判率的回代估计=(n12+n21)/(n1+n2)
由于该值是建立判别函数的数据又用于评估,所以比真实误判率小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值