二叉树基础
二叉树的种类:
满二叉树:结点数量为二的k次方减一,k为二叉树的深度
完全二叉树:除了底层都是满的,底层的结点从左往右连续(大顶堆、小顶堆、堆是完全二叉树)
二叉搜索树(节点有顺序):左子树小于中间结点,右子树大于中间结点
平衡二叉搜索树:在二叉搜索树的基础上,左子树和右子树的高度差绝对值不能超过一
存储方式:
链式存储:二叉树其实就是一个链表
遍历方式:
1.深度优先遍历:常见形式为前序遍历、中序遍历、后序遍历(把一个方向搜到头,回退,再换另一个方向)。一般是用递归来实现
前序遍历:中左右
中序遍历:左中右
后序遍历:左右中
2.广度优先遍历:常见形式为层序遍历。一般使用迭代法,用队列实现对二叉树一层一层的搜索
二叉树c++定义:
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
递归遍历
递归的三步:
1.确定递归函数的参数和返回值
2.确定终止条件
3.确定单层递归的逻辑
前序遍历:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur==NULL)return;
vec.push_back(cur->val);
traversal(cur->left, vec);
traversal(cur->right, vec);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int>result;
traversal(root,result);
return result;
}
};
中序遍历:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur==NULL)return;
traversal(cur->left, vec);
vec.push_back(cur->val);
traversal(cur->right, vec);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int>result;
traversal(root,result);
return result;
}
};
后序遍历:
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur==NULL)return;
traversal(cur->left, vec);
traversal(cur->right, vec);
vec.push_back(cur->val);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int>result;
traversal(root,result);
return result;
}
};