【DP SDOI2008 BZOJ 2037】Sue的小球

这篇博客介绍了如何帮助Sue和Sandy在一款电脑游戏中收集空中彩蛋以获得最高分数。通过将问题转化为动态规划模型,利用排序和前缀和,求解在收集所有彩蛋基础上的最高得分。文章包含输入输出格式,样例输入输出,以及解题思路和代码实现。
摘要由CSDN通过智能技术生成

Description

    Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船。然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩蛋,Sue有一个秘密武器,只要她将小船划到一个彩蛋的正下方,然后使用秘密武器便可以在瞬间收集到这个彩蛋。然而,彩蛋有一个魅力值,这个魅力值会随着彩蛋在空中降落的时间而降低,Sue要想得到更多的分数,必须尽量在魅力值高的时候收集这个彩蛋,而如果一个彩蛋掉入海中,它的魅力值将会变成一个负数,但这并不影响Sue的兴趣,因为每一个彩蛋都是不同的,Sue希望收集到所有的彩蛋。 然而Sandy就没有Sue那么浪漫了,Sandy希望得到尽可能多的分数,为了解决这个问题,他先将这个游戏抽象成了如下模型: 以Sue的初始位置所在水平面作为x轴。 一开始空中有N个彩蛋,对于第i个彩蛋,他的初始位置用整数坐标(xi, yi)表示,游戏开始后,它匀速沿y轴负方向下落,速度为vi单位距离/单位时间。Sue的初始位置为(x0, 0),Sue可以沿x轴的正方向或负方向移动,Sue的移动速度是1单位距离/单位时间,使用秘密武器得到一个彩蛋是瞬间的,得分为当前彩蛋的y坐标的千分之一。 现在,Sue和Sandy请你来帮忙,为了满足Sue和Sandy各自的目标,你决定在收集到所有彩蛋的基础上,得到的分数最高。

Input

    第一行为两个整数N, x0用一个空格分隔,表示彩蛋个数与Sue的初始位置。 第二行为N个整数xi,每两个数用一个空格分隔,第i个数表示第i个彩蛋的初始横坐标。 第三行为N个整数yi,每两个数用一个空格分隔,第i个数表示第i个彩蛋的初始纵坐标。 第四行为N个整数vi,每两个数用一个空格分隔,第i个数表示第i个彩蛋匀速沿y轴负方向下落的的速度。

Output

    一个实数,保留三位小数,为收集所有彩蛋的基础上,可以得到最高的分数。

Sample Input

3 0

-4 -2 2

22 30 26

1 9 8

Sample Output

0.000

Data

N < = 1000,对于100%的数据。
104<=xi,yi,vi<=104

I think

     参见2009年国家集训队论文

徐源盛《对一类动态规划问题的研究》

     首先对每一颗彩蛋按照横坐标x排序,用f1[i][j] 记已收集第i~j颗彩蛋停在i处时的最高分数,f2[i][j] 记已收集第i~j颗彩蛋最后停在j处时的最高分数,w[i][j] 记除i~j颗彩蛋之外所有彩蛋速度之和(用前缀和实现)。
     已收集第i~j颗彩蛋后,由第i颗彩蛋移向第i-1颗彩蛋的过程中,只有第1~i-1颗,j+1~n颗彩蛋在下落,因此可以得到递推式:

f1[i][j]=max(f1[i+1][j]w[i+1][j](x[i+1]x[i]),f2[i+1][j]w[i+1][j](x[j]x[i]));

f2[i][j]=max(f1[i][j1]w[i][j1](x[j]x[i]),f2[i][j1]w[i][j1](x[j]x[j1]));

     最终结果 ANS=max(f1[1][n],f2[1][n]);
     由中间向两边递推,我的代码是由两边到中间记忆化搜索。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int sm = 1e3+5;

struct ball{
    int x,y,v;
}b[sm];

int xx,N,inf;
int V[sm],f[2][sm][sm];
double ans;

bool cmp(ball a,ball b) {
    return a.x<b.x; 
}

int dfs(int t,int i,int j) {
    if(i>j||f[t][i][j]!=inf)return f[t][i][j];
    if(i==j) return f[0][i][j]=f[1][i][j]=-abs(xx-b[i].x)*V[N]+b[i].y;
    int tmp=inf,w;
    if(t==0) {
        w=V[N]-(V[j]-V[i]);
        tmp=max(tmp,dfs(0,i+1,j)-w*abs(b[i+1].x-b[i].x));
        tmp=max(tmp,dfs(1,i+1,j)-w*abs(b[j].x-b[i].x));
        return f[t][i][j]=tmp+b[i].y;
    }
    else {
        w=V[N]-(V[j-1]-V[i-1]);
        tmp=max(tmp,dfs(0,i,j-1)-w*abs(b[i].x-b[j].x));
        tmp=max(tmp,dfs(1,i,j-1)-w*abs(b[j-1].x-b[j].x));
        return f[t][i][j]=tmp+b[j].y;
    }
}

int main() {    
    scanf("%d%d",&N,&xx);
    for(int i=1;i<=N;++i)scanf("%d",&b[i].x);
    for(int i=1;i<=N;++i)scanf("%d",&b[i].y);
    for(int i=1;i<=N;++i)scanf("%d",&b[i].v);
    sort(b+1,b+N+1,cmp);
    for(int i=1;i<=N;++i)
        V[i]=V[i-1]+b[i].v;

    memset(f,-0x3f,sizeof(f));
    inf=f[0][0][0];

    ans=1.0*max(dfs(0,1,N),dfs(1,1,N));
    printf("%.3lf\n",ans/1000);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值