SDOI 2008 Sue的小球



Description

Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船。然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩蛋,Sue有一个秘密武器,只要她将小船划到一个彩蛋的正下方,然后使用秘密武器便可以在瞬间收集到这个彩蛋。然而,彩蛋有一个魅力值,这个魅力值会随着彩蛋在空中降落的时间而降低,Sue要想得到更多的分数,必须尽量在魅力值高的时候收集这个彩蛋,而如果一个彩蛋掉入海中,它的魅力值将会变成一个负数,但这并不影响Sue的兴趣,因为每一个彩蛋都是不同的,Sue希望收集到所有的彩蛋。 然而Sandy就没有Sue那么浪漫了,Sandy希望得到尽可能多的分数,为了解决这个问题,他先将这个游戏抽象成了如下模型: 以Sue的初始位置所在水平面作为x轴。 一开始空中有N个彩蛋,对于第i个彩蛋,他的初始位置用整数坐标(xi, yi)表示,游戏开始后,它匀速沿y轴负方向下落,速度为vi单位距离/单位时间。Sue的初始位置为(x0, 0),Sue可以沿x轴的正方向或负方向移动,Sue的移动速度是1单位距离/单位时间,使用秘密武器得到一个彩蛋是瞬间的,得分为当前彩蛋的y坐标的千分之一。 现在,Sue和Sandy请你来帮忙,为了满足Sue和Sandy各自的目标,你决定在收集到所有彩蛋的基础上,得到的分数最高。

Input

第一行为两个整数N, x0用一个空格分隔,表示彩蛋个数与Sue的初始位置。 第二行为N个整数xi,每两个数用一个空格分隔,第i个数表示第i个彩蛋的初始横坐标。 第三行为N个整数yi,每两个数用一个空格分隔,第i个数表示第i个彩蛋的初始纵坐标。 第四行为N个整数vi,每两个数用一个空格分隔,第i个数表示第i个彩蛋匀速沿y轴负方向下落的的速度。

Output

一个实数,保留三位小数,为收集所有彩蛋的基础上,可以得到最高的分数。

Sample Input

3 0
-4 -2 2
22 30 26
1 9 8

Sample Output

0.000


数据范围:
N < = 1000,对于100%的数据。 -10^4 < = xi,yi,vi < = 10^4
这题动态规划比较特殊,它将未来的费用在当前计算,即 将未来损失的分数在现在体现出来
f[i][j]表示左边取了i个小球,右边取了j个小球后,损失的分数
所以可用f1[i][j]表示按上述取球后到达i位置,f2[i][j]表示到达j位置
f1[i][j]=min(f1[i-1][j]+f1[i][j]=min(f1[i-1][j]+(a[i].x-a[i-1].x)*d1,
                  f2[i-1][j]+(a[i].x+b[j].x)*d1);
f2[i][j]=min(f1[i][j-1]+(a[i].x+b[j].x)*d2,
                 f2[i][j-1]+(b[j].x-b[j-1].x)*d2);
答案为s-min(f1[cnt1-1][cnt2-1],f2[cnt1-1][cnt2-1]
详见代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn=1000+10;
int f1[maxn][maxn],f2[maxn][maxn];
int x[maxn],y[maxn],v[maxn];
struct point
{
	int x,sum;
	friend bool operator<(const point &d,const point&e)
	{
		return d.x<e.x;
	}
};
point a[maxn],b[maxn];
int main()
{
	int n,x0,s;
	scanf("%d%d",&n,&x0);
	s=0;
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&x[i]);
		}
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&y[i]);
			s+=y[i];
		}
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&v[i]);
		}
		int cnt1=1;
		int cnt2=1;
		for(int i=1;i<=n;i++)
		{
			if(x[i]<x0)
			{
				a[cnt1].x=x0-x[i];
				a[cnt1].sum=v[i];
				cnt1++;
			}
		}
		for(int i=1;i<=n;i++)
		{
			if(x[i]>x0)
			{
				b[cnt2].x=x[i]-x0;
				b[cnt2].sum=v[i];
				cnt2++;
			}
		}
		sort(a+1,a+cnt1);
		sort(b+1,b+cnt2);
		a[0].sum=b[0].sum=0;
		for(int i=1;i<cnt1;i++) a[i].sum+=a[i-1].sum;
		for(int i=1;i<cnt2;i++) b[i].sum+=b[i-1].sum;
		//初始化很重要
		for(int i=1;i<cnt1;i++)
		{
			f1[i][0]=f1[i-1][0]+(a[i].x-a[i-1].x)*(a[cnt1-1].sum-a[i-1].sum+b[cnt2-1].sum);
			f2[i][0]=f1[i][0]+a[i].x*(b[cnt2-1].sum+a[cnt1-1].sum-a[i].sum);
		}
		for(int i=1;i<cnt2;i++)
		{
			f2[0][i]=f2[0][i-1]+(b[i].x-b[i-1].x)*(a[cnt1-1].sum+b[cnt2-1].sum-b[i-1].sum);
			f1[0][i]=f2[0][i]+b[i].x*(a[cnt1-1].sum+b[cnt2-1].sum-b[i].sum);
		}
		//DP
		for(int i=1;i<cnt1;i++)
		{
			for(int j=1;j<cnt2;j++)
			{
				int d1=a[cnt1-1].sum-a[i-1].sum+b[cnt2-1].sum-b[j].sum;
				int d2=a[cnt1-1].sum-a[i].sum+b[cnt2-1].sum-b[j-1].sum;
				f1[i][j]=min(f1[i-1][j]+(a[i].x-a[i-1].x)*d1,f2[i-1][j]+(a[i].x+b[j].x)*d1);
				f2[i][j]=min(f1[i][j-1]+(a[i].x+b[j].x)*d2,f2[i][j-1]+(b[j].x-b[j-1].x)*d2);
			}
		}
		printf("%.3lf\n",double(s-min(f1[cnt1-1][cnt2-1],f2[cnt1-1][cnt2-1]))/1000.0);
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
sue交通分配”是一种基于路网的交通流分配算法,该算法可以用于优化路网中不同路径的交通流量,以降低交通拥堵和提高路网的效率。 在MATLAB中,可以使用以下代码来实现“sue交通分配”算法: 1. 定义路网:假设我们有一个简单的路网,其中节点数为5,边数为6。我们可以将每个节点看作是交叉口,而每条边则表示两个交叉口之间的道路。我们可以使用三个数组来表示路网信息: node:包含每个节点的编号,从1到5。 edge:包含每条边的起始节点、结束节点和长度。 x0:包含每个节点的初始交通流量。 2. 构建分配矩阵:我们可以使用Dijkstra算法来计算路网中所有节点之间的最短路径,并且将这些路径的交通流量分配给它们所经过的每一条边。这可以通过创建一个分配矩阵来实现,该矩阵的大小为n×m,其中n是路网中的边数,m是路网中的节点数。矩阵中的每一项都表示相应的边和节点之间的最短路径长度。 3. 计算交通流量:一旦我们有了分配矩阵,就可以通过解一个线性规划问题来计算出每条边上的最终交通流量。这个线性规划问题可以用MATLAB的“linprog”函数来求解。 4. 评估结果:最后,我们可以使用MATLAB的绘图函数来将交通流量可视化,以及比较分配前后每条边上的交通流量,以评估算法的性能。 总之,“sue交通分配”算法是一种非常有效的交通流分配算法,可以用MATLAB来实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值