Swin Transformer训练报错问题

1. 训练遇到报错问题

(1)mportError: cannot import name '_pil_interp' from 'timm.data.transforms'

       原因: timm.data.transforms里面没有_pil_interp,只有str_to_pil_interp、_str_to_pil_interpolation、_pil_interpolation_to_str

      解决办法:在build.py中将下面图中的 _pil_interp改为str_to_pil_interp,下图是已经改变后的。

改完上面两步后发现还有一个错误提示

 init() got an unexpected keyword argument ‘t_mul’

在  lr_scheduler.py中,点击进入进入到相应代码处,注释掉图中代码即可。

 

<think>好的,我现在需要帮助用户在MMDetection框架中集成和使用Swin Transformer。首先,我应该回忆一下MMDetection的基本结构和它支持的模型类型。MMDetection是一个基于PyTorch的目标检测库,支持多种检测模型,比如Faster R-CNN、Mask R-CNN等,并且允许用户使用不同的主干网络(backbone)。 用户提到Swin Transformer,这是一个基于Transformer的视觉模型,由微软提出,它在图像分类、目标检测等任务中表现很好。我需要确定MMDetection是否已经内置支持Swin Transformer。根据之前的了解,MMDetection在较新的版本中可能已经支持Swin Transformer作为主干网络,比如在v2.x版本中。因此,用户可能不需要自己从头集成,而是可以通过配置文件的修改来使用现有的实现。 接下来,我应该考虑用户如何具体配置和使用。通常,MMDetection使用配置文件(config文件)来定义模型结构、数据集、训练参数等。用户需要在配置文件中指定backbone为Swin Transformer。可能需要安装相应的依赖,比如MMClassification,因为Swin Transformer可能作为预训练模型存放在那里。 然后,步骤可能包括安装必要的库,如mmdet、mmcv、mmcls等,确保版本兼容。然后修改配置文件中的model.backbone部分,指向Swin Transformer的配置,并设置预训练权重的路径。同时,可能需要调整输入图像的尺寸,因为Swin Transformer可能有特定的分辨率要求,比如224x224或更大的尺寸。 另外,用户可能需要下载预训练Swin Transformer权重,并在配置中指定路径。训练时,使用tools/train.py脚本并指定配置文件即可。 我还需要注意是否有常见的错误,比如版本不匹配,或者配置文件参数不正确。例如,如果用户使用的MMCV版本过低,可能不支持某些操作,导致运行错误。此时需要建议用户升级到适当的版本,并按照官方文档检查依赖关系。 另外,用户可能想知道如何验证Swin Transformer是否正确集成。可以建议用户运行测试脚本或检查日志中的模型结构输出,确认backbone是否已替换为Swin Transformer。 最后,生成相关问题,可能涉及性能优化、与其他模型的比较,或者在不同任务中的应用情况,这些都需要基于已有的引用和文档来推荐。</think>在MMDetection中集成和使用Swin Transformer的步骤如下: ### 1. 环境准备 - **安装依赖库**:确保已安装兼容版本的`mmdet`、`mmcv`和`mmcls`。推荐使用以下版本: ```bash pip install mmdet==2.25.0 mmcv-full==1.6.0 mmcls==0.23.0 ``` - **验证安装**:运行`import mmdet, mmcv`确认无报错[^1]。 ### 2. 配置文件修改 MMDetection通过配置文件定义模型结构。以`Faster R-CNN`为例,修改其配置文件(如`configs/swin/mask_rcnn_swin-t-p4-w7_fpn_1x_coco.py`): ```python model = dict( backbone=dict( type='SwinTransformer', embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, pretrained='pretrained/swin_tiny_patch4_window7_224.pth' ), neck=dict(...), rpn_head=dict(...), roi_head=dict(...) ) ``` 需指定`pretrained`参数为预训练权重路径[^2]。 ### 3. 下载预训练权重 从官方仓库获取Swin Transformer的预训练模型: ```bash wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth ``` ### 4. 训练与推理 - **训练命令**: ```bash tools/train.py configs/swin/your_config_file.py ``` - **测试命令**: ```bash tools/test.py configs/swin/your_config_file.py your_checkpoint.pth --eval bbox segm ``` ### 关键注意事项 - **输入分辨率**:Swin Transformer通常需要输入尺寸为$224 \times 224$的整数倍(如$224 \times 224$或$448 \times 448$)。 - **显存优化**:若显存不足,可减小`batch_size`或在配置文件中启用`gradient_checkpoint`: ```python backbone=dict(use_checkpoint=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值