【高中选修二】数列

数列定义

我们一般将一些有序的数称为数列,这些数称作数列的,数列第一项 一般被称作首项

数列可以表示为 a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,…,a_n a1,a2,a3,,an,简写为 { a n } \{a_n\} {an}

若函数 f ( x ) f(x) f(x) x ∈ Z + x \in Z_+ xZ+ 中都有意义,则满足 f ( x ) = a x f(x)=a_x f(x)=ax 的数列 { a n } \{a_n\} {an} 可以写为 { f ( x ) } \{f(x)\} {f(x)}

数列单调性

我们可以通过类比函数单调性来定义数列单调性。

若数列 { x n } \{x_n\} {xn} 中,有 ∀ x , x n > x n − 1 \forall x,x_n>x_{n-1} x,xn>xn1,则称 { x n } \{x_n\} {xn} 单调递增

若数列 { x n } \{x_n\} {xn} 中,有 ∀ x , x n < x n − 1 \forall x,x_n<x_{n-1} x,xn<xn1,则称 { x n } \{x_n\} {xn} 单调递减

若数列 { x n } \{x_n\} {xn} 中存在 M ∈ R + M \in \mathbb R_+ MR+,使得 ∀ n , ∣ x n ∣ ≤ M \forall n,|x_n|\leq M n,xnM,则称 { x n } \{x_n\} {xn} 有界

数列公式

通项公式

{ x n } \{x_n\} {xn} 的每一项都满足 x n = f ( x n ) x_n=f(x_n) xn=f(xn),其中 f ( x n ) f(x_n) f(xn) 是关于 n n n 的函数,则称 f ( x n ) f(x_n) f(xn) 为数列 { x n } \{x_n\} {xn}通项公式

通过通项公式,我们可以快速计算数列每一项的值。

递推公式

{ x n } \{x_n\} {xn} 的每一项都可以通过 f ( n ) f(n) f(n) 从前面几项的值计算得到,则 f ( x ) f(x) f(x) { x n } \{x_n\} {xn} 的递推公式。

例如 x n = x n − 1 + 1 x_n=x_{n-1} +1 xn=xn1+1

有时候,由递推公式可以计算得通项公式。

前 n 项和公式

我们一般用 { S n } \{S_n\} {Sn} 来表示一个数列 { x n } \{x_n\} {xn} 的前 n n n 项和。
S n = ∑ i = 1 n x i S_n=\sum_{i=1}^nx_i Sn=i=1nxi

那么可以得到: ∑ i = l r x i = S r − S l − 1 \sum\limits_{i=l}^r x_i=S_{r}-S_{l-1} i=lrxi=SrSl1

常见数列

等差数列

等差数列定义

若存在 { x n } \{x_n\} {xn},使得 ∀ n > 1 , x n = x n − 1 + d \forall n>1,x_n=x_{n-1}+d n>1,xn=xn1+d。那么我们称 { x n } \{x_n\} {xn}等差数列,其中 d d d公差

等差数列通项公式

若一个等差数列 { x n } \{x_n\} {xn},公差为 d d d,则 x n = x 1 + d ( n − 1 ) x_n=x_1+d(n-1) xn=x1+d(n1)

等差数列前 n 项和公式

若等差数列 { x n } \{x_n\} {xn} 公差为 d d d,则 S n = n ( x n + x 1 ) 2 S_n=\dfrac{n(x_n+x_1)}{2} Sn=2n(xn+x1)

等比数列

等比数列定义

若存在 { x n } \{x_n\} {xn},使得 ∀ n > 1 , x n = q x n − 1 \forall n>1,x_n=qx_{n-1} n>1,xn=qxn1。那么我们称 { x n } \{x_n\} {xn}等比数列,其中 q q q公比

等比数列通项公式

若等比数列 { x n } \{x_n\} {xn} 公比为 d d d,则 x n = q n − 1 x 1 x_n=q^{n-1}x_1 xn=qn1x1

等比数列前 n 项和公式

若等比数列 { x n } \{x_n\} {xn} 公比为 d d d,则 S n = a 1 ( 1 − q n ) 1 − q S_n=\dfrac{a_1(1-q^n)}{1-q} Sn=1qa1(1qn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值