数列定义
我们一般将一些有序的数称为数列,这些数称作数列的项,数列第一项 一般被称作首项。
数列可以表示为 a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,…,a_n a1,a2,a3,…,an,简写为 { a n } \{a_n\} {an}。
若函数 f ( x ) f(x) f(x) 在 x ∈ Z + x \in Z_+ x∈Z+ 中都有意义,则满足 f ( x ) = a x f(x)=a_x f(x)=ax 的数列 { a n } \{a_n\} {an} 可以写为 { f ( x ) } \{f(x)\} {f(x)}。
数列单调性
我们可以通过类比函数单调性来定义数列单调性。
若数列 { x n } \{x_n\} {xn} 中,有 ∀ x , x n > x n − 1 \forall x,x_n>x_{n-1} ∀x,xn>xn−1,则称 { x n } \{x_n\} {xn} 单调递增。
若数列 { x n } \{x_n\} {xn} 中,有 ∀ x , x n < x n − 1 \forall x,x_n<x_{n-1} ∀x,xn<xn−1,则称 { x n } \{x_n\} {xn} 单调递减。
若数列 { x n } \{x_n\} {xn} 中存在 M ∈ R + M \in \mathbb R_+ M∈R+,使得 ∀ n , ∣ x n ∣ ≤ M \forall n,|x_n|\leq M ∀n,∣xn∣≤M,则称 { x n } \{x_n\} {xn} 有界。
数列公式
通项公式
若 { x n } \{x_n\} {xn} 的每一项都满足 x n = f ( x n ) x_n=f(x_n) xn=f(xn),其中 f ( x n ) f(x_n) f(xn) 是关于 n n n 的函数,则称 f ( x n ) f(x_n) f(xn) 为数列 { x n } \{x_n\} {xn} 的通项公式。
通过通项公式,我们可以快速计算数列每一项的值。
递推公式
若 { x n } \{x_n\} {xn} 的每一项都可以通过 f ( n ) f(n) f(n) 从前面几项的值计算得到,则 f ( x ) f(x) f(x) 为 { x n } \{x_n\} {xn} 的递推公式。
例如 x n = x n − 1 + 1 x_n=x_{n-1} +1 xn=xn−1+1。
有时候,由递推公式可以计算得通项公式。
前 n 项和公式
我们一般用
{
S
n
}
\{S_n\}
{Sn} 来表示一个数列
{
x
n
}
\{x_n\}
{xn} 的前
n
n
n 项和。
S
n
=
∑
i
=
1
n
x
i
S_n=\sum_{i=1}^nx_i
Sn=i=1∑nxi
那么可以得到: ∑ i = l r x i = S r − S l − 1 \sum\limits_{i=l}^r x_i=S_{r}-S_{l-1} i=l∑rxi=Sr−Sl−1。
常见数列
等差数列
等差数列定义
若存在 { x n } \{x_n\} {xn},使得 ∀ n > 1 , x n = x n − 1 + d \forall n>1,x_n=x_{n-1}+d ∀n>1,xn=xn−1+d。那么我们称 { x n } \{x_n\} {xn} 为等差数列,其中 d d d 为公差。
等差数列通项公式
若一个等差数列 { x n } \{x_n\} {xn},公差为 d d d,则 x n = x 1 + d ( n − 1 ) x_n=x_1+d(n-1) xn=x1+d(n−1)。
等差数列前 n 项和公式
若等差数列 { x n } \{x_n\} {xn} 公差为 d d d,则 S n = n ( x n + x 1 ) 2 S_n=\dfrac{n(x_n+x_1)}{2} Sn=2n(xn+x1)
等比数列
等比数列定义
若存在 { x n } \{x_n\} {xn},使得 ∀ n > 1 , x n = q x n − 1 \forall n>1,x_n=qx_{n-1} ∀n>1,xn=qxn−1。那么我们称 { x n } \{x_n\} {xn} 为等比数列,其中 q q q 为公比。
等比数列通项公式
若等比数列 { x n } \{x_n\} {xn} 公比为 d d d,则 x n = q n − 1 x 1 x_n=q^{n-1}x_1 xn=qn−1x1。
等比数列前 n 项和公式
若等比数列 { x n } \{x_n\} {xn} 公比为 d d d,则 S n = a 1 ( 1 − q n ) 1 − q S_n=\dfrac{a_1(1-q^n)}{1-q} Sn=1−qa1(1−qn)。