【高中必修一】三角函数

任意角

一条射线绕着端点旋转一定角度所得的图形。
起始位置称为始边,结束位置称为终边
其端点称为顶点
转动角度可以为负数,也可以大于 360 ° 360\degree 360°,一般来说,负角以顺时针方向旋转,正角以逆时针方向旋转。
如果没有旋转,则称为零角

为了方便讨论,在平面直角坐标系中,我们固定角的始边为x轴非负半轴。
终边落在第几象限,则称此角为第几象限角,若落在坐标轴上,则称为轴线角

角的表示

角可以用集合表示,一般用一个度数表示一个角,一个变量表示集合中所有角。

角度的弧度制

为了将角度用于函数中,我们规定长度等于半径的弧所对应的圆心角称为 1 1 1 弧度角。用符号 rad ⁡ \operatorname{rad} rad 表示,读作弧度。

任意圆心角 a a a 其弧度大小为其所对弧的长比上半径。

1 rad ⁡ = 180 ° π , π rad ⁡ = 180 ° 1 \operatorname{rad}=\dfrac{180\degree}{\pi}, \pi \operatorname{rad}=180\degree 1rad=π180°,πrad=180°

三角函数定义

原定义

三角函数总共有 6 6 6 个,分为(前三个是常用的):

sin ⁡ α : \sin\alpha: sinα: 正弦,对边比斜边。
cos ⁡ α : \cos\alpha: cosα: 余弦,临边比斜边。
tan ⁡ α : \tan\alpha: tanα: 正切,对边比临边。
csc ⁡ α : \csc\alpha: cscα: 余割,斜边比对边。
sec ⁡ α : \sec\alpha: secα: 正割,斜边比临边。
cot ⁡ α : \cot\alpha: cotα: 余切,临边比对边。

其中有:

tan ⁡ α = sin ⁡ α cos ⁡ α \tan \alpha = \dfrac{\sin \alpha}{\cos \alpha} tanα=cosαsinα

csc ⁡ α = 1 sin ⁡ α \csc\alpha = \dfrac{1}{\sin \alpha} cscα=sinα1

sec ⁡ α = 1 cos ⁡ α \sec\alpha = \dfrac{1}{\cos \alpha} secα=cosα1

cot ⁡ α = 1 tan ⁡ α \cot\alpha = \dfrac{1}{\tan \alpha} cotα=tanα1

单位圆

单位圆为圆心是坐标原点,半径为 1 1 1 的圆。

单位圆表示三角函数

在平面直角坐标系中, A ( x , y ) A(x,y) A(x,y) 为单位圆上一点, ∠ α \angle\alpha α 终边为 O A OA OA,则 sin ⁡ α = y , cos ⁡ α = x \sin\alpha = y,\cos\alpha=x sinα=y,cosα=x

直线 x = 1 x = 1 x=1 O A OA OA 延长线于点 B B B,交 x x x 轴于点 C C C,则 tan ⁡ α = C y \tan\alpha = C_y tanα=Cy

三角函数在各个象限的符号:

函数第一象限第二象限第三象限第四象限
正弦 sin ⁡ \sin sin++--
余弦 cos ⁡ \cos cos+--+
正切 tan ⁡ \tan tan+-+-
余割 csc ⁡ \csc csc++--
正割 sec ⁡ \sec sec+--+
余切 cot ⁡ \cot cot+-+-

三角恒等变形

诱导公式

sin 诱导公式

sin ⁡ ( α + 2 k π ) = sin ⁡ α ( k ∈ Z ) \sin (\alpha+2k\pi)=\sin \alpha(k\in\mathbb Z) sin(α+2)=sinα(kZ)

sin ⁡ − α = − sin ⁡ α \sin -\alpha=-\sin \alpha sinα=sinα

sin ⁡ ( π − α ) = sin ⁡ α \sin (\pi-\alpha)=\sin \alpha sin(πα)=sinα

sin ⁡ ( π 2 − α ) = cos ⁡ α \sin (\dfrac{\pi}{2}-\alpha)=\cos \alpha sin(2πα)=cosα

sin ⁡ ( α + π ) = − sin ⁡ α \sin (\alpha+\pi)=-\sin \alpha sin(α+π)=sinα

sin ⁡ ( α + π 2 ) = cos ⁡ α \sin (\alpha + \dfrac{\pi}{2})=\cos \alpha sin(α+2π)=cosα

cos 诱导公式

cos ⁡ ( α + 2 k π ) = cos ⁡ α ( k ∈ Z ) \cos (\alpha+2k\pi)=\cos \alpha(k\in\mathbb Z) cos(α+2)=cosα(kZ)

cos ⁡ − α = cos ⁡ α \cos -\alpha=\cos \alpha cosα=cosα

cos ⁡ ( π − α ) = − cos ⁡ α \cos (\pi-\alpha)=-\cos \alpha cos(πα)=cosα

cos ⁡ ( π 2 − α ) = sin ⁡ α \cos (\dfrac{\pi}{2}-\alpha)=\sin \alpha cos(2πα)=sinα

cos ⁡ ( α + π ) = − cos ⁡ α \cos (\alpha+\pi)=-\cos \alpha cos(α+π)=cosα

cos ⁡ ( α + π 2 ) = − sin ⁡ α \cos (\alpha + \dfrac{\pi}{2})=-\sin \alpha cos(α+2π)=sinα

tan 诱导公式

tan ⁡ ( α + 2 k π ) = tan ⁡ α ( k ∈ Z ) \tan (\alpha+2k\pi)=\tan \alpha(k\in\mathbb Z) tan(α+2)=tanα(kZ)

tan ⁡ − α = − tan ⁡ α \tan -\alpha=-\tan \alpha tanα=tanα

tan ⁡ ( π − α ) = − tan ⁡ α \tan (\pi-\alpha)=-\tan \alpha tan(πα)=tanα

tan ⁡ ( α + π ) = tan ⁡ α \tan (\alpha+\pi)=\tan \alpha tan(α+π)=tanα

和差角公式

cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β \cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta cos(αβ)=cosαcosβ+sinαsinβ

cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β \cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta cos(α+β)=cosαcosβsinαsinβ

sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β \sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta sin(αβ)=sinαcosβcosαsinβ

sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β \sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta sin(α+β)=sinαcosβ+cosαsinβ

tan ⁡ ( α − β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α tan ⁡ β \tan(\alpha-\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta} tan(αβ)=1tanαtanβtanα+tanβ

tan ⁡ ( α + β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α tan ⁡ β \tan(\alpha+\beta)=\dfrac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta} tan(α+β)=1+tanαtanβtanαtanβ

二倍角公式

基本公式

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α \sin 2\alpha = 2\sin\alpha\cos\alpha sin2α=2sinαcosα

cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α \cos 2\alpha = \cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha cos2α=cos2αsin2α=2cos2α1=12sin2α

tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan 2\alpha = \dfrac{2\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα

逆公式

( sin ⁡ α ± cos ⁡ α ) 2 = 1 ± 2 sin ⁡ α (\sin\alpha\pm\cos\alpha)^2=1\pm2\sin\alpha (sinα±cosα)2=1±2sinα

sin ⁡ 2 α = 1 − cos ⁡ 2 α 2 \sin^2\alpha=\dfrac{1-\cos2\alpha}{2} sin2α=21cos2α

cos ⁡ 2 α = 1 + cos ⁡ 2 α 2 \cos^2\alpha=\dfrac{1+\cos2\alpha}{2} cos2α=21+cos2α

万能公式

sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 \sin\alpha=\dfrac{2\tan\dfrac{\alpha}{2}}{1+\tan^2\dfrac{\alpha}{2}} sinα=1+tan22α2tan2α

cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 \cos\alpha=\dfrac{1-\tan^2\dfrac{\alpha}{2}}{1+\tan^2\dfrac{\alpha}{2}} cosα=1+tan22α1tan22α

tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \tan\alpha=\dfrac{2\tan\dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}} tanα=1tan22α2tan2α

三倍角公式(拓展)

sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α = 4 sin ⁡ α sin ⁡ ( π 3 − α ) sin ⁡ ( π 3 + α ) \sin3\alpha=3\sin\alpha-4\sin^3\alpha=4\sin\alpha\sin(\dfrac{\pi}{3}-\alpha)\sin(\dfrac{\pi}{3}+\alpha) sin3α=3sinα4sin3α=4sinαsin(3πα)sin(3π+α)

cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α = 4 cos ⁡ α cos ⁡ ( π 3 − α ) cos ⁡ ( π 3 + α ) \cos3\alpha=4\cos^3\alpha-3\cos\alpha=4\cos\alpha\cos(\dfrac{\pi}{3}-\alpha)\cos(\dfrac{\pi}{3}+\alpha) cos3α=4cos3α3cosα=4cosαcos(3πα)cos(3π+α)

tan ⁡ 3 α = 3 tan ⁡ α − tan ⁡ 3 α 1 − 3 tan ⁡ 2 α = tan ⁡ α tan ⁡ ( π 3 − α ) tan ⁡ ( π 3 + α ) \tan3\alpha=\dfrac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}=\tan\alpha\tan(\dfrac{\pi}{3}-\alpha)\tan(\dfrac{\pi}{3}+\alpha) tan3α=13tan2α3tanαtan3α=tanαtan(3πα)tan(3π+α)

和差与积间的转换

和差化积

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin\alpha+\sin\beta=2\sin\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ

sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin\alpha-\sin\beta=2\cos\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ

cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos\alpha+\cos\beta=2\cos\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ

cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos\alpha-\cos\beta=-2\sin\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ

积化和差

sin ⁡ α cos ⁡ β = 1 2 [ s i n ( α + β ) + s i n ( α − β ) ] \sin\alpha\cos\beta=\dfrac{1}{2}[sin(\alpha+\beta)+sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]

cos ⁡ α sin ⁡ β = 1 2 [ s i n ( α + β ) − s i n ( α − β ) ] \cos\alpha\sin\beta=\dfrac{1}{2}[sin(\alpha+\beta)-sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)]

sin ⁡ α sin ⁡ β = − 1 2 [ c o s ( α + β ) − c o s ( α − β ) ] \sin\alpha\sin\beta=-\dfrac{1}{2}[cos(\alpha+\beta)-cos(\alpha-\beta)] sinαsinβ=21[cos(α+β)cos(αβ)]

cos ⁡ α cos ⁡ β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] \cos\alpha\cos\beta=\dfrac{1}{2}[cos(\alpha+\beta)+cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]

三角函数图像

正弦函数

正弦函数图像如下所示:
y=sin(x)
定义域: R \mathbb R R,值域: [ − 1 , 1 ] [-1,1] [1,1]
对称轴: x = π 2 + k π ( k ∈ Z ) x=\frac{\pi}{2}+k\pi(k\in\mathbb Z) x=2π+(kZ)
对称中心: ( k π , 0 ) ( k ∈ Z ) (k\pi,0)(k\in\mathbb Z) (,0)(kZ)
单调递增区间: ( − π 2 + 2 k π , π 2 + 2 k π ) ( k ∈ Z ) (-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi)(k\in\mathbb Z) (2π+2,2π+2)(kZ)
单调递减区间: ( π 2 + 2 k π , 3 π 2 + 2 k π ) ( k ∈ Z ) (\frac{\pi}{2}+2k\pi,\frac{3\pi}{2}+2k\pi)(k\in\mathbb Z) (2π+2,23π+2)(kZ)
奇偶性:奇函数,最小正周期: 2 π 2\pi 2π

余弦函数

余弦函数图像如下所示:
y=cos(x)
定义域: R \mathbb R R,值域: [ − 1 , 1 ] [-1,1] [1,1]
对称轴: x = k π ( k ∈ Z ) x=k\pi(k\in\mathbb Z) x=(kZ)
对称中心: ( π 2 + k π , 0 ) ( k ∈ Z ) (\frac{\pi}{2}+k\pi,0)(k\in\mathbb Z) (2π+,0)(kZ)
单调递增区间: ( − π + 2 k π , 2 k π ) ( k ∈ Z ) (-\pi+2k\pi,2k\pi)(k\in\mathbb Z) (π+2,2)(kZ)
单调递减区间: ( 2 k π , π + 2 k π ) ( k ∈ Z ) (2k\pi,\pi+2k\pi)(k\in\mathbb Z) (2,π+2)(kZ)
奇偶性:偶函数,最小正周期: 2 π 2\pi 2π

正切函数

正切函数图像如下所示:
y=tan(x)
定义域: { x ∣ x ≠ π 2 + k π , k ∈ Z } \{x|x\not=\frac{\pi}{2}+k\pi,k\in\mathbb Z\} {xx=2π+,kZ},值域: R \mathbb R R
对称中心: ( k π 2 , 0 ) ( k ∈ Z ) (\frac{k\pi}{2},0)(k\in\mathbb Z) (2,0)(kZ)
单调递增区间: ( − π 2 + k π , π 2 + k π ) ( k ∈ Z ) (-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi)(k\in\mathbb Z) (2π+,2π+)(kZ)
奇偶性:奇函数,最小正周期: π \pi π

正弦型三角函数

我们称形如 y = A sin ⁡ ( ω x + φ ) , A > 0 , ω > 0 y=A\sin(\omega x+\varphi),A>0,\omega>0 y=Asin(ωx+φ),A>0,ω>0 为正弦型函数,图像如下:
y=Asin(ωx+φ)
其中 A A A 被称为振幅, φ \varphi φ 为初相, ω x + φ \omega x+\varphi ωx+φ 为相位。
定义域: R \mathbb R R
值域: [ − A , A ] [-A,A] [A,A]
对称轴: x = 1 ω ( π 2 − φ + k π ) ( k ∈ Z ) x=\frac{1}{\omega}(\frac{\pi}{2}-\varphi+k\pi)(k\in\mathbb Z) x=ω1(2πφ+)(kZ)
对称中心: ( 1 ω ( − φ + k π ) , 0 ) ( k ∈ Z ) (\frac{1}{\omega}(-\varphi+k\pi),0)(k\in\mathbb Z) (ω1(φ+),0)(kZ)
单调递增区间: [ 1 ω ( − π 2 − φ + 2 k π ) , 1 ω ( π 2 − φ + 2 k π ) ] ( k ∈ Z ) [\frac{1}{\omega}(-\frac{\pi}{2}-\varphi+2k\pi),\frac{1}{\omega}(\frac{\pi}{2}-\varphi+2k\pi)](k\in\mathbb Z) [ω1(2πφ+2),ω1(2πφ+2)](kZ)
单调递减区间: [ 1 ω ( π 2 − φ + 2 k π ) , 1 ω ( 3 π 2 − φ + 2 k π ) ] ( k ∈ Z ) [\frac{1}{\omega}(\frac{\pi}{2}-\varphi+2k\pi),\frac{1}{\omega}(\frac{3\pi}{2}-\varphi+2k\pi)](k\in\mathbb Z) [ω1(2πφ+2),ω1(23πφ+2)](kZ)
φ = k π ( k ∈ Z ) \varphi=k\pi(k\in\mathbb Z) φ=(kZ) 时,函数为奇函数,当 φ = π 2 + k π ( k ∈ Z ) \varphi=\frac{\pi}{2}+k\pi(k\in\mathbb Z) φ=2π+(kZ)时,函数为偶函数。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值