Spark调优总结

本文总结了使用Spark过程中的调优经验,包括调整executor内存、设置JVM垃圾回收算法、存储与执行内存分配比例、缓存RDD、广播大变量、合理设置分区数量、优化SQL查询、使用高效的集合操作、谨慎使用collection、智能使用coalesce和repartition、提前执行filter、减少groupByKey的使用,以及关注任务执行的性能指标。通过这些技巧,可以有效提升Spark作业的性能和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      下面主要是笔者根据使用Spark过程中的一些调优做一些汇总。


1、调整分配excutor memory

-num-executors 100 --executor-cores 4 --driver-memory 6g --executor-memory 6g
首先先将参数调大一点,然后程序跑通过后。再通过Spark任务的监控页面看资源使用的情况。再来调整各项目参数。一般情况下,调整这几个参数都会很有用。

2、调整JVM垃圾回收算法

可以通过 --conf 来批明使用的垃圾回收算法,对于多核处理器来说,一般是使用CMS+PartNew。自己也可以设置一些其它参数,如年轻代、年老代的各大小,垃圾回收日志的校园等。如下:

--conf "spark.driver.extraJavaOptions=-XX:PermSize=512m -XX:MaxPermSize=512m  -XX:+CMSClassUnloadingEnabled -XX:MaxTenuringThreshold=31 -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=10 -XX:+UseCompressedOops -XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateS
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值