两个全微分定理

定理1

若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P ( x , y ) P(x,y) P(x,y)处可微 d z = A Δ x + B Δ y \mathrm{d}z=A\Delta x+B\Delta y dz=AΔx+BΔy
1 ) 1) 1)在点 P P P处偏导数 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz都存在
2 ) ∂ z ∂ x = A , ∂ z ∂ y = B 2)\frac{\partial z}{\partial x}=A,\frac{\partial z}{\partial y}=B 2)xz=A,yz=B

偏微分: ∂ z ∂ x d x \frac{\partial z}{\partial x}\mathrm{d}x xzdx称为在点 P ( x , y ) P(x,y) P(x,y)处关于 x x x的偏微分,是偏增量 Δ x Z \Delta_xZ ΔxZ线性主部

微分的叠加原理:多元函数的全微分等于其各个偏微分之和

定理2

若在点 P ( x , y ) P(x,y) P(x,y)的某邻域内,函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ y \frac{\partial z}{\partial y} yz都存在且偏导数都在点P处连续,则 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P P P处可微

偏导数在一点连续:多元函数的偏导数仍是多元函数,不能片面的认为是固定某个变量后转化为一元函数在该点连续,几何上想象成在一条固定曲线上的点两侧平滑 讨论多元函数的偏导数在某点连续,与正常讨论多元函数在某点连续性没有区别,几何上是一个固定曲面上的点各个方向都平滑(二元为例)

对于一元函数,在一点处:

可微 ⇔ \Leftrightarrow 可导 ⇒ \Rightarrow 连续 ⇒ \Rightarrow 有极限

对于多元函数,在一点处:

偏导连续 ⇒ \Rightarrow 可微 ⇒ \Rightarrow 连续 ⇒ \Rightarrow 有极限
                      ⇓ \Downarrow
                 有偏导

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值