- 博客(1331)
- 资源 (3)
- 问答 (2)
- 收藏
- 关注

原创 【Python】比较新奇的用法
1、元组作为字典的键值import numpy as npa = {}a[tuple([1024,1024,3])] = np.zeros((2,4))print(a[(1024,1024,3)])结果为:array([[0., 0., 0., 0.], [0., 0., 0., 0.]])我想应该是元组具有唯一性,所以可以被使用。2、对数组中满足条件元素...
2019-08-02 15:40:58
316
3

原创 【Opencv】官方文档,学习教程
官方中文:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/tutorials.html官方英文:https://docs.opencv.org/2.4/doc/tutorials/tutorials.html学习教程:https://blog.csdn.net/zhmxy555/column/info/opencv-t...
2019-03-27 16:34:25
4753
1

原创 常用网址
银行银行信息:https://www.yinhang123.net/yhll/外贸http://bbs.fobshanghai.com/index.php股票app:同花顺学习深度学习和机器学习项目及代码:https://paperswithcode.com/sota面试https://github.com/CyC2018/CS-Notes路由器无线...
2019-02-21 12:13:06
381
转载 【ISP】Commercial Camera ISP 的江湖
出isp芯片自用的公司挺多,侧重点也不太一样,拍照视频对焦这些衡量因素很多,很难一概而论,活着的都有自己的手段,按照拍照水平,富士强一些,索尼松下差不多,佳能尼康稍差一些,按照视频水平,松下索尼佳能都把专业视频做进去了,尼康还没找到北,富士在里面算比较折衷。手机芯片isp里面,高通,三星,苹果,海思和mtk,后面俩稍微弱一些,顺带说一句,海思监控和手机部门用的是两套isp,手机基本侧重拍照,现在大量玩计算摄影,和传统isp有区别。AMD买的德国一家公司的IP,这个IP卖了很多家,属于前几代产品,功能太少。
2023-05-26 17:28:01
6
转载 【ISP】去雾算法(1)
本文提出了一种针对含有雾的图像和视频快速、完善的去雾算法。观察发现有雾的图像普遍具有低对比度,我们通过增强对比度来修复图像。然后多度的增强这些低对比度会截断像素值以及导致信息丢失。因此,我们提出一个包含对比度和信息损失的损失函数。通过最小化损失函数,该算法不仅增强了对比度而且有效的保留了图像信息。另外,我们将图片去雾算法扩展到视频去雾。我们通过计算透射率的相关性减少对视频去雾时的闪烁程度。实验证明该算法去雾的有效性以及快速地进行实时去雾。在这项工作中,我们提出了一种基于优化对比度增强的去嗪算法。
2023-05-25 17:44:39
11
转载 【ISP】噪声(1)
热像素是在画面暗部或者黑色区域出现很亮颜色的像素点,对图像质量有很大影响。它们的数量和强度会随着ISO和曝光时间的增加而增加。在低ISO和相对较短的快门速度下,热像素可能很少,但曝光时间增加到一定程度时,其数量会呈现爆炸式增长。
2023-05-23 16:50:01
14
转载 【ISP】Sharpen(1)
在Photoshop以及众多软件中,都提供了清晰度的调整工具。当我们增加照片的清晰度,靠近边缘较暗的一侧会变得更暗,靠近边缘较亮的一侧会变得更亮,但这种亮度对比的变化只局限在边缘周围的部分。清晰度相当于让边缘亮的一边加上一根白色渐变条,暗的一边加上一根黑色渐变条,从而让物体轮廓和细节纹理更加清晰。因此增加清晰度,只会增加边缘附近的反差,让物体轮廓更清晰。对照片整体的对比度,影响没有对比度滑块那么大。
2023-05-22 10:04:28
14
转载 【ISP】图像色深
为了更准确的表示原意,概念部分会直接引用原文。位深(Bit Depth)是一种用‘0’和‘1’也就是‘位’来表示一张图片有多少种颜色的量化方式。通俗的说也就是表示一张照片进行色彩数码离散化的强度程度,关系到这个强度是粗粒度还是细粒度。以灰度图(Grayscale image)举例,其没有深度(只有一个channel),Bit depth就表示其有多少个灰度。更高的位深意味着可以编码更多的阴影和颜色。对于一张图片来说,并不是将颜色离散化得越细越好,原因有二。
2023-05-17 15:34:53
15
转载 【ISP】HSV(1)
颜色有三要素,和。尽管纯白光被认为是无色的,但实际上它包含可见光谱中的所有颜色。当白光撞击物体时,它会选择性地阻挡某些颜色并反射其他颜色;只有反射的颜色有助于观看者对颜色的感知。人眼使用和的组合来感知该光谱。更适合视觉,但,而也可以,但它们在明亮的光线下效果最佳。眼睛中存在三种类型的视锥细胞,每种视锥细胞分别对短(S),中(M)或长(L)波长的光更敏感。在所有三个视锥细胞上可能出现的信号集描述了我们可以用眼睛看到的颜色范围。下图说明了整个可见光谱中每种电池的相对灵敏度。这些曲线通常也称为“三刺激函数”。
2023-05-17 14:44:33
22
转载 【ISP】颜色的理解
在这篇文章中,我介绍了与人类视觉系统感知颜色相关的一些知识,为进一步阐述计算摄影学中与颜色相关的知识打下一些基础,希望对你有帮助。也请期待后面我对颜色这一与计算摄影相关的重要主题的更多文章。这篇文章介绍了三原色原理,以及在此基础上接近100年前人类所做的颜色匹配实验和随之带来的重要成果:CIE RGB和CIE XYZ颜色空间,后者已经成为了一种非常重要的标准颜色空间。这篇文章基于前面所讲的知识,对设备相关的颜色以及处理流程做了更多的探讨。
2023-05-17 14:15:30
37
转载 【ISP】CMOS(2)-像素类型
最简单的Pixel结构只有一个PN结作为感光结构,以及一个与它相连的reset晶体管(RS)作为一个开关,如下图所示。当sensor 控制逻辑需要读出阵列中的某个特定像素时,需要发出该像素的行地址和列地址,地址会被两个译码器(address decoder)解析并激活该像素所在的行选择线和列选择线,使该像素的PN结电容经过RS三级管连接到输出放大器上,如下图所示。
2023-05-17 12:22:43
30
转载 人类3D的感觉是什么
比如:我在一条路上走,前方的树逐渐变大,向两边靠,然后消失,树枝树叶的相对大小,面向我们的角度和相对我们的位置都会不断变化,两颗树的相对位置也会不断变化,互相间的遮挡也会不断变化,光线透过树叶的缝隙也会不断变化,这些是非常复杂的数学计算才能做到的,是一个简单的图片拼接无法完成的,因此2d游戏不满足第7条。但是一个叫3d,一个叫2d。1,我们一般说的3d是“真实的感受到3d",也就是左眼和右眼可以看到不同角度的画面,只有这样才是有”真实3d“的感觉,也就是只有满足第2,3条才是我们一般所说的”3d“。
2023-05-11 16:07:02
22
转载 【计算机视觉基础】5.投影变换扩展(单应性Homograph估计)
投影变换分为和中心投影(透视投影),投影变换是联系三维空间物体与二维图形的桥梁。
2023-05-11 15:00:19
62
转载 【计算机视觉基础】7.相机成像的几何描述
(埃菲尔铁塔),该如何用数学的方法来描述这一过程呢?首先要解决的问题就是定位,或者说坐标选定的问题,埃菲尔铁塔只有一座,如果按经、纬度来刻画,它的坐标是唯一确定的,但游客显然不关心这一点,他(她)只按自己的喜好选择角度和位置,因此,物体(景物)有物体的坐标系统,相机有相机的坐标系统,即便同一个相机,当调整参数时,在同样的位置、相同的角度,也可能得到不同的图像。为了统一描述,有必要引入世界坐标(或物体坐标)、相机坐标和像平面坐标。试想像一下,很多游客同时在不同角度拍摄。
2023-05-10 22:11:25
21
转载 【计算机视觉基础】2.理解齐次坐标
齐次坐标是一个相机标定问题的关键理论之一,所以就此问题分析一下。单从定义上来讲,齐次坐标(投影坐标)就是用N+1维来代表N维坐标(点和向量),也可说用齐次坐标来表示笛卡尔坐标,具体的数学表达式可以这样写:在直角坐标系点坐标(x,y)末尾加上一个额外的变量w,一个点(X,Y)在齐次坐标里面变成了(x,y,w),并且有X = x/wY = y/w。
2023-05-09 21:47:09
29
转载 【计算机视觉基础】1.矩阵的作用
那么我们可以理解为,选取一个基其实就是选取了一个参考坐标系,选取另一个基就是选取了另一个参考坐标系,当我们从某个基(参考坐标系)来观察,那么基中的向量就是参考坐标系的坐标轴,一组基中有几个基向量就是几个坐标轴,n维空间的一个基就需要n个基向量,当然了我们学习图形学只是研究三维空间就是了,如下图:
2023-05-09 18:06:53
15
转载 【计算机视觉基础】6.视差与深度信息
深度信息感知是人类产生立体视觉的前提。生理过程一定是相当复杂,此处,我们只从物理角度,并采用数学的方法来讨论。
2023-05-09 16:27:00
46
转载 【ISP】HSV(3)RGB2HSV和HSV2RGB
为了识别图像中的特定颜色(红绿黄等),常常将彩色图片转换为HSV图片,限定HSV取值范围既可以获取需要的颜色。
2023-04-14 17:23:00
113
转载 WPS里公式居中、编号右对齐
此时有更详细的WPS教程可以参加左下标蓝的操作技巧,在此我放一个WPS学堂的链接:https://www.wps.cn/learning/course/detail/id/857.html?这个时候如果觉得公式的居中位置不佳,可以如法炮制上述步骤设一个居中制表符,然后将光标定位于公式左侧前端,按下Tab键。WPS里,我目前没找到公式自动编号的方式,在此提供一种还算编辑的手动编号并右对齐的方式。步骤1、打开WPS文档,点击视图菜单,勾选标尺复选框的√,显示文档的标尺。
2023-04-11 18:10:17
1900
2
原创 大学课程及专业课搜集
GitHub - QSCTech/zju-icicles: 浙江大学课程攻略共享计划GitHub - lib-pku/libpku: 贵校课程资料民间整理GitHub - PKUanonym/REKCARC-TSC-UHT: 清华大学计算机系课程攻略 Guidance for courses in Department of Computer Science and Technology, Tsinghua UniversityGitHub - tongtzeho/PKUCourse: 北大计算机课程大作业
2023-04-10 14:21:08
271
转载 【ISP】低亮度图片增强方法
低亮度图片增强方法:直方图均衡化 - 简书低亮度图片增强算法:基于去雾算法的低亮度图像增强算法 - 简书低亮度图片增强方法:基于Retinex理论的低亮度图片增强算法1 - 简书低亮度图片增强方法:基于Retinex理论的低亮度图片增强算法2 - 简书低亮度图片增强方法:基于相机相应模型的低亮度图片增强算法 - 简书低亮度图片增强方法:基于保持图像自然度的低亮度图片增强算法 - 简书低亮度图片增强方法:基于多图像融合的低亮度图片增强算法 - 简书
2023-04-10 11:26:06
121
转载 【排序算法】归并排序—C++实现
分治,就是把一个问题分成多个相似或相同的子问题,直到子问题可以简单的解决。归并排序就是运用了这个分治思想,通过递归把要排序的元素分成多个子序列,l记录起始位置,r记录末尾位置,在进行循环,去判断大小,从而完成排序。
2023-03-29 11:49:17
42
转载 【ISP】通过RGB或YUV改变图像的色度和饱和度
在YUV空间,Y代表亮度,UV又称CR和CB代表色度偏红和偏紫,要改变饱和度需要将U和V同比例的增加和减少,如下图。
2023-03-25 15:59:55
198
转载 【PyQt】如何实时显示opencv格式的视频
显示视频和显示图片一样需要新建一个QLabel来显示,然后opencv格式的图片不能直接显示,需要用下面代码转换一下。
2023-03-15 10:27:18
172
转载 Python+Opencv:解决打开摄像头慢的问题,现在秒开视频
打开摄像头非常慢,大概需要5-11秒才能输出视频,这个问题困扰了我很久,一直没得到解决.今天终于得到解决,实现了秒开,值得记录和庆贺一下.
2023-03-15 09:28:09
188
1
转载 gitignore设置忽略文件和目录
当我们在使用git上传项目时有一些目录和文件是不需要上传的,比如node_modules、package-lock.json等等,而且这些文件上传到仓库后,其他人拉取后会和本地文件产生冲突。右键直接选中文件或文件夹,加入(切记忽略只针对未加到git版本库中,如果是已经加到版本库中的文件显示是delete and add gitignore list),加入gitignorelist实际是往.gitignore文件中添加文件的路径,手动往.gitignore这个文件中添加一样的,比如方法。
2023-03-14 10:02:53
1660
转载 【C++】%d,%05d,%-5d,%.5d的区分
5d是将数字按宽度为5,采用右对齐方式输出,若数据位数不到5位,则左边补空格。%d,%05d,%-5d,%.5d的区分。%05d,和%5d差不多,只不过左边补0。%.5d从执行效果来看,和%05d一样。
2023-03-13 17:18:07
94
转载 【ISP】Sharpen(2)
1.什么是锐度锐度(acutance)常用于描述边界处图像信息过渡的快慢。高反差图像过渡速度非常快,可以形成非常明确的边缘,而低反差图像存在一定的过渡缓冲,表现在成像上就是模糊的边缘。由于人类视觉的特性是对高反差的刺激更加敏感,锐度越高会感觉画面越清楚,反之则感觉画面模糊不清,细节表现不足。2.什么是锐化锐化(sharpen)就是使用一定的算法对图像进行处理以检测图像中存在的边缘,然后对符合条件的边缘采取一定的滤波措施以达到提高边缘锐度的目的。那么,一幅图像是不是锐度越高越好呢?当然不是。
2023-03-10 15:00:45
263
转载 【ISP】Contrast
当 α>1 时,大于128的颜色趋向于饱和,小于128的颜色趋向于0,图像的对比度被提升。如果图像的色调集中分布在纯黑和纯白两个极端,中间色调很少,则认为是高对比度。如果图像的色调主要集中在中间地带,缺少纯黑和纯白的像素,则认为是低对比度。对比度可以用多种方法定义,在图像处理领域经常使用Michelson定义,即。当 α=0 时,R'=G'=B'=128,图像变为纯灰色,对比度下降至0。如果图像中从纯黑到纯白之间还包含了丰富的色调,则认为是中等对比度。其中Lmax, Lmin分别为图像中最大、最小像素值。
2023-03-10 14:27:59
79
转载 SVD的应用:求解Ax=b
SVD,Singular Value Decomposition,奇异值分解,作为线性代数中的重要工具,被应用在不同领域。本文只介绍如何使用这一工具求解。本节给出详细的例子介绍 【3. 关于解的讨论】中的情况,若已经理解前面的章节,可以跳过本节。2. 伪逆 Pseudoinverse。有一个大概的介绍,这里借用一下图片。iii.b. 矮胖但不满秩。ii.b. 细长但不满秩。iii.a. 矮胖且满秩。i.b. 方阵但不满秩。ii.a. 细长且满秩。i.a. 方阵且满秩。
2023-03-08 18:09:29
71
转载 【机器学习】(1.1)最小二乘法计算过程
这里的距离最小并非点到直线的垂直距离最短,而是点到直接的y轴距离最短,即通过该点并与y轴平行的直线,点到该y轴平行线与直线交点的距离最短,如下图所示的双向箭头。例如在某种疾病是在两种条件下发生的,但是需要当这两种条件满足一定关系时才会促发疾病,因此医生就可以通过患病样本获得患病情况下的两种条件值,标记到一个二维坐标中,通过最小二乘法,可以将患病的两种条件通过函数表达出来,从而当有另外一个新疑似患者就医时,则可以根据二元一次方程确定是否可能患有该疾病。
2023-03-08 17:54:33
265
转载 【Python-Opencv】cv2.imread()基本参数介绍
filename:需要打开图片的路径,可以是绝对路径或者相对路径,路径中不能出现中文。flag:图像的通道和色彩信息(默认值为1)。可以根据自己的需要对参数进行设置。
2023-03-06 17:34:13
372
转载 OpenCV基础类型3(固定向量类cv::Vec<>、Vec2i、Vec3i、Vec3f、Vec2f)
OpenCV中固定向量模板类cv::Vec派生自固定矩阵类cv::Matx,固定矩阵类解释参照我的博文OpenCV基础类型2,即使不知道固定矩阵类也不影响我们使用固定向量类,为了方便使用,固定向量类定义了一些别名,了解这些别名的规则至关重要。里面介绍了固定矩阵类,固定向量类是由它派生而来,向量是一个只有一列的矩阵(在OpenCV中),注意OpenCV里面的向量都是列向量,计算时也按列向量计算。{b, s ,w , i, f, d}表示向量内数据类型。{2,3,4,6}代表向量的长度。
2023-03-02 12:00:25
75
转载 【C++】全局变量定义在哪里合适
链接的时候就会出错。另外,在一些编译器中会提示你加static,当你在头文件中定义全局变量的时候,加了static的全局变量表示只在该源文件中有效,不管是.h还是.c,所以你某个源文件中能编译通过,在使用的时候发现,这个全局变量地址怎么不一样,这就是因为加了static的缘故,相当于你在两个原文件中分别定义了static的同名变量,因为static修饰作用,不会重名报错,但是很有可能跟你初始想法就不一样了。最近审核代码发现,有些刚入门的同学在头文件中定义了全局变量,链接报错重定义。
2023-02-28 17:06:00
357
转载 【ISP】Gamma理解
我相信几乎所有做图像处理方面的人都听过伽马校正(Gamma Correction)这一个名词,但真正明白它是什么、为什么要有它、以及怎么用它的人其实不多。我也不例外。最初我查过一些资料,但很多文章的说法都不一样,有些很晦涩难懂。直到我最近在看《Real Time Rendering,3rd Edition》这本书的时候,才开始慢慢对它有所理解。本人才疏学浅,写的这篇文章很可能成为网上另一篇误导你的“伽马传说”,但我尽可能把目前了解的资料和可能存在的疏漏写在这里。如有错误,还望指出。
2023-02-28 17:03:36
142
MIL-nature-medicine-2019-master.zip
2019-10-15
C# 单步执行可以成功,直接运行却不能成功
2016-04-07
C# 用户控件的Load事件不能执行
2015-05-10
TA创建的收藏夹 TA关注的收藏夹
TA关注的人