机器学习day01

数据集

1. 可用数据集

Kaggle网址:https://www.kaggle.com/datasets

UCI数据集网址: http://archive.ics.uci.edu/ml/

scikit-learn网址:http://scikit-learn.org/stable/datasets/index.html#datasets

2. sklearn

  • 小数据集datasets.load_*():

    sklearn.datasets.load_iris()               加载并返回鸢尾花数据集
    
    sklearn.datasets.load_boston()              加载并返回波士顿房价数据集
    
  • 大数据集datasets.fetch_*(data_home=None):
    sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)
    subset:‘train’或者’test’,‘all’,可选,选择要加载的数据集。
    训练集的“训练”,测试集的“测试”,两者的“全部”
    data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/

  • sklearn数据集的使用

sklearn数据集返回值介绍:

		load和fetch返回的数据类型datasets.base.Bunch(字典格式) 
		
		 - data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
		 - target:标签数组,是 n_samples 的一维numpy.ndarray 数组 
		 - DESCR:数据描述 
		 - feature_names:特征名,新闻数据,手写数字、回归数据集没有
		   
		 - target_names:标签名

3. 数据集的划分

机器学习一般的数据集会划分为两个部分:

  • 训练数据:用于训练,构建模型
  • 测试数据:在模型检验时使用,用于评估模型是否有效

划分比例:

  • 训练集:70% 80% 75%
  • 测试集:30% 20% 30%

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

4. 特征工程

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

	pandas:一个数据读取非常方便以及基本的处理格式的工具
	sklearn:对于特征的处理提供了强大的接口

特征工程包含内容:

	特征提取
	特征预处理
	特征降维

4.1 特征抽取

将任意数据(如文本或图像)转换为可用于机器学习的数字特征

		字典特征提取(特征离散化)
		文本特征提取
		图像特征提取(深度学习将介绍)

字典特征提取

   sklearn.feature_extraction.DictVectorizer(sparse=True,…)
   
   应用场景
    数据集中类别特征比较多或者本身拿到的数据就是字典类型

文本特征提取

	 sklearn.feature_extraction.text.CountVectorizer(stop_words=[])
               
      应用场景
      统计样本出现的个数
     
      中文文本特征抽取
      jieba.cut()
		返回词语组成的生成器

Tf-idf文本特征提取

sklearn.feature_extraction.text.TfidfVectorizer(stop_words=None,....)
TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

	词频(term frequency,tf)指的是某一个给定的词语在该文件中出现的频率
	逆向文档频率(inverse document frequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取以10为底的对数得到

	注:假如一篇文件的总词语数是100个,而词语"非常"出现了5次,那么"非常"一词在该文件中的词频就是5/100=0.05。而计算文件频率(IDF)的方法是以文件集的文件总数,除以出现"非常"一词的文件数。所以,如果"非常"一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是lg(10,000,000 / 1,0000)=3。最后"非常"对于这篇文档的tf-idf的分数为0.05 * 3=0.15

4.2 特征预处理

数值型数据的无量纲化:归一化、标准化

特征预处理API
	sklearn.preprocessing

为什么我们要进行归一化/标准化?

特征的单位或者大小相差较大,或者某特征的方差相比其他的特征要大出几个数量级,容易影响(支配)目标结果,使得一些算法无法学习到其它的特征
无量纲化,使不同规格的数据转换到同一规格

4.2.1 归一化

在这里插入图片描述

	sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )

4.2.2 标准化
在这里插入图片描述

sklearn.preprocessing.StandardScaler( )

4.3 特征降维

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程

降维的两种方式

特征选择
主成分分析(可以理解一种特征提取的方式)

4.3.1 特征选择

定义:数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。

 方法:
1.Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
		方差选择法:低方差特征过滤
		相关系数----特征与特征之间的相关程度
				皮尔逊相关系数
2.Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)
		决策树:信息熵、信息增益
		正则化:L1、L2
		深度学习:卷积等

sklearn.feature_selection
  • 低方差特征过滤

    删除低方差的一些特征

     特征方差小:某个特征大多样本的值比较相近
     特征方差大:某个特征很多样本的值都有差别
    
     sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
    
  • 皮尔逊相关系数(Pearson Correlation Coefficient)

     相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:
     
     当r>0时,表示两变量正相关,r<0时,两变量为负相关
     当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
     当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
     一般可按三级划分:|r|<0.4为低度相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关
    
     from scipy.stats import pearsonr
    
     特征和特征相关性很高:
     特征选择、加权求和一个新特征、主成分分析
    
  • 主成分分析(PCA)

    定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量
    作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。
    应用:回归分析或者聚类分析当中

     sklearn.decomposition.PCA(n_components=None)
    
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值