机器学习——Day2

1.5sklearn——一元线性回归

from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
# 载入数据
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,0]
y_data = data[:,1]
plt.scatter(x_data,y_data)
plt.show()
print(x_data.shape)

在这里插入图片描述

# 调整数据格式
x_data = data[:,0,np.newaxis]
y_data = data[:,1,np.newaxis]
# 创建并拟合模型
model = LinearRegression()
model.fit(x_data, y_data)


# 画图
plt.plot(x_data, y_data, 'b.')
plt.plot(x_data, model.predict(x_data), 'r')
plt.show()

在这里插入图片描述

1.6多元线性回归

多元线性回归的求解和一元线性回归异曲同工,无非是求导的次数增加了
f ( x ) = θ 0 + θ 1 ∗ x 1 + . . . + θ n ∗ x n f(x) = \theta_0+\theta_1*x_1+...+\theta_n*x_n f(x)=θ0+θ1x1+...+θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值