1.5sklearn——一元线性回归
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
# 载入数据
data = np.genfromtxt("data.csv", delimiter=",")
x_data = data[:,0]
y_data = data[:,1]
plt.scatter(x_data,y_data)
plt.show()
print(x_data.shape)
# 调整数据格式
x_data = data[:,0,np.newaxis]
y_data = data[:,1,np.newaxis]
# 创建并拟合模型
model = LinearRegression()
model.fit(x_data, y_data)
# 画图
plt.plot(x_data, y_data, 'b.')
plt.plot(x_data, model.predict(x_data), 'r')
plt.show()
1.6多元线性回归
多元线性回归的求解和一元线性回归异曲同工,无非是求导的次数增加了
f ( x ) = θ 0 + θ 1 ∗ x 1 + . . . + θ n ∗ x n f(x) = \theta_0+\theta_1*x_1+...+\theta_n*x_n f(x)=θ0+θ1∗x1+...+θ