# 1007. Maximum Subsequence Sum (25)

400 ms

65536 kB

16000 B

Standard

CHEN, Yue

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:
10 1 4


#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int maxn = 10000, INF = 0x7fffffff;
int a[maxn + 10];

int main()
{
int K;
cin >> K;
bool check = false;
for (int i = 0; i < K; i++) {
scanf("%d", &a[i]);
if (a[i] >= 0) check = true;
}
if (!check) {
printf("0 %d %d\n", a[0], a[K - 1]);
return 0;
}
int s = a[0], e = a[0], ts = a[0];
int tsum = 0, maxx = -INF;
bool flag = false;
for (int i = 0; i < K; i++) {
//flag == true时说明上一次迭代的时候tsum < 0了，要重新计算最大子列和s
if (flag) {
ts = a[i]; //计算新的子列和，取新的左端点
flag = false; //注意解除标记
}
tsum += a[i];
if (maxx < tsum) {
s = ts; //更新最终的左端点s
e = a[i]; //更新右端点e
maxx = tsum;
}
if (tsum < 0) { //debug 不要放到if(maxx < tsum)上面
flag = true;
tsum = 0;
}
}
printf("%d %d %d\n", maxx, s, e);
return 0;
}

#### 1007. Maximum Subsequence Sum (25)-PAT甲级真题（动态规划dp）

2016-08-07 20:13:17

#### 【PAT】1007. Maximum Subsequence Sum (25)

2013-08-23 16:11:58

#### PAT 1007 Maximum Subsequence Sum（最大子串和）

2017-05-10 19:03:21

#### 1007. Maximum Subsequence Sum (25) -- 动态规划

2015-08-13 21:11:58

#### PAT 1007 Maximum Subsequence Sum（最长子段和）

2016-05-26 19:37:48

#### 算法笔记-1-最大子列和-Maximum Subsequence Sum

2016-09-18 22:58:39

#### Maximum Subsequence Sum[PAT1007][PTA01-复杂度2]——动态规划

2016-04-24 00:35:59

#### 1007. Maximum Subsequence Sum （最大连续子序列）

2017-03-28 21:38:15

#### PAT Advanced Level 1002. A+B for Polynomials (25)(Java)

2014-09-13 23:03:23

#### pat-top 1013. Image Segmentation (35)

2017-03-03 21:14:49