骰子 (入门概率DP)

【概率】骰子

时间限制: 1 Sec  内存限制: 128 MB
提交: 14  解决: 10
[提交] [状态] [讨论版] [命题人:admin]

题目描述

众所周知,骰子是一个六面分别刻有一到六点的立方体,每次投掷骰子,从理论上讲得到一点到六点的概率都是1/6。今有骰子一颗,连续投掷N次,问点数总和大于等于X的概率是多少?

输入

一行两个整数,分别表示n和x,其中1≤N≤24,0≤x<150。

输出

一行,一个分数,要求以最简的形式精确地表达出连续投掷N次骰子,总点数大于等于X的概率。如果是0/1就输出0,如果是1/1,就输出1。

样例输入

3 9

样例输出

20/27

友好的中文题面,通俗易懂的题意,初次接触概率DP,略有不解,写博客以记之。
DP[i][j]表示抛i枚硬币,点数和为j的方案数。因为每种方案都是等概率出现的,所以求得方案数之后除去总的方案数6^n就是最后的结果。方案数很容易计算,外层i从0到n-1表示抛第i枚硬币,第二层j从0到i*6,枚举当前位置能达到的方案数,内层k从1到6,表示这次抛硬币的结果对i+1次的影响。易得到状态转移:dp[i+1][j+k] += dp[i][j]

代码实现:

/*
Look at the star
Look at the shine for U
*/
#include<bits/stdc++.h>
#define ll unsigned long long
#define PII pair<int,int>
#define sl(x) scanf("%lld",&x)
using namespace std;
const int N = 1e6+5;
const int mod = 998244353;
const int INF = 0x3f3f3f3f;
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}
ll dp[1005][1005];
int main()
{
    ll n,k,i,j,m;
    cin>>n>>m;
    dp[0][0] = 1;
    for(i = 0;i < n;i++)
    {
        for(j = 0;j <= i*6;j++)
        {
            for(k = 1;k <= 6;k++) dp[i+1][j+k] += dp[i][j];
        }
    }
    ll ans = 0,temp = 1;
    for(i = m;i <= 6*n;i++) ans += dp[n][i];
    for(i = 0;i < n;i++) temp *= 6;
    if(ans%temp == 0){cout<<ans/temp<<endl;return 0;}
    ll t = __gcd(ans,temp);
    cout<<ans/t<<"/"<<temp/t<<endl;
}

 

期望dp概率dp是两种不同的动态规划方法。 期望dp是指通过计算每个状态的期望值来求解最终的期望。在期望dp中,我们通常定义dp\[i\]表示在第i个状态时的期望值,然后通过状态转移方程来更新dp数组,最终得到最终状态的期望值。期望dp通常用于求解期望问题,例如求解骰子的期望点数、求解抽奖的期望次数等。 概率dp是指通过计算每个状态的概率来求解最终的概率。在概率dp中,我们通常定义dp\[i\]表示在第i个状态时的概率,然后通过状态转移方程来更新dp数组,最终得到最终状态的概率概率dp通常用于求解概率问题,例如求解抛硬币出现正面的概率、求解从一副牌中抽到红心的概率等。 总结来说,期望dp概率dp的区别在于它们所计算的是不同的值,期望dp计算的是期望值,而概率dp计算的是概率值。 #### 引用[.reference_title] - *1* [概率/期望dp专题](https://blog.csdn.net/qq_34416123/article/details/126585094)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【动态规划】数学期望/概率DP/期望DP详解](https://blog.csdn.net/weixin_45697774/article/details/104274160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值