骰子【概率dp】

题目链接 P1409 骰子


  因为会有人被弹出队列,所以我设置的期望dp为dp[i][j],表示当现在队列中有i个人的时候,第j个人获胜的概率。

  于是有当只剩一个人的时候,那个人必胜,dp[1][1] = 1

  再往下,先看它在队首的情况,dp[i][1] = \frac{1}{6} + \frac{3}{6} *dp[i][i]也就是直接获胜的概率加上它被弹到队尾时候的概率。

  其他的情况呢,也就是不在队首的时候呢,dp[i][j] = \frac{2}{6} * dp[i - 1][j - 1] + \frac{3}{6} * dp[i][j - 1],表示的是如果第一个被弹出队列,或者第一个被弹到队尾时候,第j-1个获胜,也就是现在的j获胜,因为j的位置就变成了j-1。

  于是,连立这两个方程组,可以得到dp[i][1]的求解方式,因为这里i比较的不清晰,接下去的式子我用x代替i表示。

dp[x][1] = \frac{1}{3} * \frac{1}{2^x - 1} * (2^{x - 1} + 2^{x - 1} * dp[x - 1][x - 1] + \cdots + 2^{k} * dp[x - 1][k] + \cdots + 2^1 * dp[x - 1][1])

所以,就可以利用一个pow来处理double型来解决这个问题了。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
//#include <unordered_map>
//#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e3 + 7;
int N, M;
double dp[maxN][maxN];
signed main()
{
    scanf("%d%d", &N, &M);
    dp[1][1] = 1.;
    double tmp;
    for(int i=2; i<=N; i++)
    {
        tmp = 1. / 3. / (pow(2., i) - 1.);
        dp[i][1] = tmp * pow(2., i - 1);
        for(int j=i-1; j>=1; j--) dp[i][1] += tmp * pow(2, j) * dp[i - 1][j];
        for(int j=2; j<=i; j++)
        {
            dp[i][j] = dp[i - 1][j - 1] / 3. + dp[i][j - 1] / 2.;
        }
    }
    printf("%.9lf\n", dp[N][M]);
    return 0;
}

 

期望dp概率dp是两种不同的动态规划方法。 期望dp是指通过计算每个状态的期望值来求解最终的期望。在期望dp中,我们通常定义dp\[i\]表示在第i个状态时的期望值,然后通过状态转移方程来更新dp数组,最终得到最终状态的期望值。期望dp通常用于求解期望问题,例如求解骰子的期望点数、求解抽奖的期望次数等。 概率dp是指通过计算每个状态的概率来求解最终的概率。在概率dp中,我们通常定义dp\[i\]表示在第i个状态时的概率,然后通过状态转移方程来更新dp数组,最终得到最终状态的概率概率dp通常用于求解概率问题,例如求解抛硬币出现正面的概率、求解从一副牌中抽到红心的概率等。 总结来说,期望dp概率dp的区别在于它们所计算的是不同的值,期望dp计算的是期望值,而概率dp计算的是概率值。 #### 引用[.reference_title] - *1* [概率/期望dp专题](https://blog.csdn.net/qq_34416123/article/details/126585094)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【动态规划】数学期望/概率DP/期望DP详解](https://blog.csdn.net/weixin_45697774/article/details/104274160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值