【爬虫实战】用python爬今日头条热榜TOP50榜单!

一、爬取目标

今天分享一期爬虫案例,爬取的目标是:今日头条热榜的榜单数据。

打开今日头条 首页,在页面右侧会看到头条热榜,如下: 爬取目标

爬取以上6个关键字段,含:

热榜排名,热榜标题,热度值,热榜标签,热榜分类,热榜链接。

开发者模式分析: 开发者分析

二、爬取结果

爬取结果截图: 部分数据

三、代码讲解

首先,导入需要用到的库:

import requests
import pandas as pd
import re

定义一个请求头:(爬取目标较简单,一个User-agent即可)

# 请求头
h1 = {
	'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.4 Safari/605.1.15',
}

定义请求地址:

url = 'https://www.toutiao.com/hot-event/hot-board/?origin=toutiao_pc'

用requests发送请求:

# 发送请求
response = requests.get(url, headers=h1)

查看响应码并以json方式接收返回数据:

# 查看响应码
print(r.status_code)
# 接收返回数据
json_data = r.json()

定义一些空列表,用于存放数据:

title_list = []  # 热榜标题
value_list = []  # 热度值
url_list = []  # 热榜链接
category_list = []  # 热榜分类
label_list = []  # 热榜标签

以"热榜标题"字段为例:

for data in json_data['data']:
	# 热榜标题
	title = data['Title']
	print('热榜标题:', title)
	title_list.append(title)

其中,热榜链接比较特殊,接口中返回的url很长,形如: 某个热榜链接

可以看到,url中从?往后,都是不必要的请求参数。

所以,用正则表达式把?后面的全部删掉,提取出id,再进行拼接url,如下:

# 正则表达式提取出链接id
url3 = re.search(r"(?<=https:\/\/www\.toutiao\.com\/trending\/)\d+", url2).group(0)
# 拼接链接
url4 = 'https://www.toutiao.com/trending/' + str(url3)

最后,把所有字段存放的列表数据组成Dataframe格式:

# 把列表数据组装成Dataframe数据
df = pd.DataFrame(
	{
		'热榜排名': range(1, data_num + 1),  # 一共50条
		'热榜标题': title_list,
		'热度值': value_list,
		'热榜标签': label_list,
		'热榜分类': category_list,
		'热榜链接': url_list,
	}
)

进一步保存到csv文件里:

# 保存到csv文件
df.to_csv(result_file, header=True, index=False, encoding='utf_8_sig')

以上,核心逻辑讲解完毕。

代码中还含有:解析热度值、热榜标签、热榜分类、热榜链接字段等,详见文末。

四、技术总结

爬取技术流程:

  1. requests 发送请求
  2. json 解析数据
  3. re 正则表达式提取文本
  4. pandas 保存csv

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓

爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值