近日,清华两位不同专业的Yao Shunyu,都选择了大模型领域。一名出身物理系,一名出身计算机系,看似八竿子打不着,却都能在同一个领域大显身手。之前我们有一期文章,以全球知名的协作平台Notion为例,探讨了“通才”的重要性,如今Claude团队对物理系学霸姚顺宇伸出橄榄枝,似乎又一次向我们展现了跨学科人才的重要性。
01.两位清华天才Yao Shunyu
姚顺宇,清华物理系的传奇特奖得主,以其在凝聚态物理领域的突破性贡献而名声大噪。他首次在国际上给出了关于非厄米系统的拓扑能带理论,并准确预测了相关现象。他的研究成果发表在世界物理顶级期刊Phys. Rev. Lett.上,含金量之高,让一位211大学的副教授都不禁感叹:我们这边即使是教授,也没有能超过姚顺宇同学目前本科期间的物理水平的。
从清华本科毕业后,姚顺宇前往斯坦福攻读博士。今年毕业后,他先是到加州伯克利做了几个月博士后,随后便正式加入了Anthropic的Claude团队,从物理的世界踏入了人工智能的奇妙殿堂。
姚顺宇(物理)
姚顺雨,同样是清华出身,姚班学霸+联席会主席,计算机专业,还是个Rapper。他在科研上的成就同样具备不小的影响力:思维树(Tree of Thoughts)让LLM反复思考,大幅提高推理能力;SWE-bench,一个大模型能力评估数据集;SWE-agent,一个开源AI程序员。他在毕业后加入了OpenAI团队
两位Yao Shunyu,同名同校、同在自己专业领域取得了令人瞩目的成就,并最终都投身于人工智能大模型的领域,成为了跨学科合作的典范。
姚顺雨(计算机)
02.Claude团队:不拘一格降人才
Claude团队属于Anthropic,一家专注于人工智能研究和开发的公司。Claude团队以其在大模型领域的工作成果而闻名,特别是在自然语言处理(NLP)和机器学习领域。
Claude团队一直以来都对物理背景的人才有着特殊的偏好。其创始人Dario Amodei自己就是物理学家,他深知物理学家的思维方式和学习能力对于人工智能的发展有着重要的意义。所以物理学霸姚顺宇加入Claude团队,似乎也是一种必然。
无独有偶,隔壁的OpenAI,也不乏物理专业出身的人才。比如Sora团队中就有北大物理系校友靖礼。Sora这类视频生成模型,被定义为“物理世界的模拟器”,其背后的扩散模型,灵感更是从物理中的热力学借鉴而来。这似乎也在告诉我们,学科之间的界限正在逐渐模糊,跨学科的合作将成为未来科技发展的趋势。
03.跨学科:职场人的求职新路?
姚顺宇的跨学科的职业发展之路,展示了在当今职场中,不同专业背景的人才如何通过跨学科的方式拓宽自己的职业道路。
物理系姚顺宇的加入将为Claude团队带来了新的思维方式和解决问题的方法,这对于团队在人工智能领域的创新和研究路径探索具有重要意义。这种跨学科的合作不仅可以增强团队的创新能力,也使团队能够更好地适应技术的快速发展和变化,以及市场需求的增长。同时,也为我们展示了个人如何利用自己的专业优势在新的领域中找到立足点。
对于Claude团队而言,招聘像姚顺宇这样的跨学科人才,为其带来了显著的优势。不同背景的成员能够促进更广泛的思维碰撞,激发新的创意。跨学科团队的成员能够从多个角度分析问题,这有助于找到更全面、更有效的解决方案,特别是在理解复杂系统和实现技术突破方面。此外,跨学科团队的多样性也增强了团队的适应性和灵活性,使其能够更快地适应新趋势和技术。
跨学科合作的趋势将继续增长,它将重塑我们的工作方式和思考模式。企业和组织需要认识到这种合作模式的价值,并积极培养和吸引跨学科人才。同时,个人也应该拥抱终身学习的理念,不断拓展自己的知识和技能边界,以适应这个快速变化的世界。在未来,我们期待看到更多像Yao Shunyu这样的跨学科人才,他们将成为推动科技进步和社会发展的关键力量。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈