Anthropic公司推出最新AI模型Claude 3.7 Sonnet,该模型被定位为市场上首款“混合推理模型”,能够在即时响应与逐步思考模式之间切换,模拟人类的快速反应与深度思考。Claude 3.7 Sonnet集成了即时响应与扩展思考功能,并在编码任务上表现出色,尤其在SWE-bench Verified等基准测试中取得领先成绩。Anthropic还发布了代理式终端工具Claude Code,支持读取代码库、编辑文件及推送GitHub仓库,进一步增强了模型在开发领域的应用潜力。模型定价为每百万输入令牌3美元,每百万输出令牌15美元,适用于Pro、Team和Enterprise计划用户。Claude 3.7 Sonnet在安全性方面也有所改进,不必要的拒绝率降低了45%,提升了用户体验和信任度。此次发布标志着Anthropic在AI推理能力与编码应用领域的进一步突破。
苹果宣布5000亿美元美国投资计划
苹果公司宣布将在未来四年内向美国市场投入超过5000亿美元,涵盖多个领域,包括在德克萨斯州新建一座人工智能服务器制造工厂,以及在全国范围内创造约2万个以研究为导向的工作岗位。新工厂计划于2026年在休斯顿附近建成,负责生产驱动苹果智能助手系统的服务器,支持其“私有云计算”架构。此外,苹果将扩大其先进制造业基金至100亿美元,并在亚利桑那州的TSMC Fab 21工厂投资生产先进硅芯片。苹果还将在密歇根州底特律开设“苹果制造业学院”,为中小企业提供AI和智能制造技术咨询。此次投资计划旨在推动苹果在人工智能、硅工程和软件开发等领域的创新,同时缓解因全球制造足迹引发的政治压力。
Grok 3发布引热潮
埃隆·马斯克旗下xAI推出的旗舰AI模型Grok 3,不仅为Grok的移动和网页版应用注入动力,还融入社交网络X,引发广泛关注。在ChatGPT坐拥4亿周活跃用户的激烈竞争中,Grok 3表现抢眼。Sensor Tower数据显示,其发布当周,Grok应用全球及美国下载量激增超10倍,美国日活跃用户飙升260%,全球增长5倍,部分归功于其在欧洲、拉美和东南亚的市场扩张。Similarweb显示,Grok.com美国日访问量从18.9万跃至90万,全球从62.7万增至450万。尽管初期数据亮眼,xAI能否持续吸引并留住用户,仍是未来发展的关键挑战。
MongoDB收购Voyage AI
MongoDB近日宣布收购Voyage AI,一家专注于生成嵌入式AI模型的新兴企业,交易细节未披露。Voyage AI此前获Snowflake、Databricks等投资2800万美元,其旗舰算法voyage-3-large据称在嵌入质量上超OpenAI和Cohere 9.7%和20.7%。MongoDB的文档数据库MongoDB Atlas以灵活性著称,此次收购旨在增强其AI应用能力。Voyage AI提供嵌入式生成及重排器模型,能优化代码、法律、财务等垂直领域数据处理,并提升搜索结果相关性。MongoDB计划年内将其整合进Atlas,简化开发者将数据转为嵌入并存储的流程,支持多模态数据及行业特定功能,从而优化AI开发效率。
Salesforce与Google Cloud携手
Salesforce与Google Cloud签署了一项为期七年、总值25亿美元的合作协议,旨在将Agentforce AI代理及客户关系管理软件整合至Google Cloud基础设施,利用其数据分析能力。此举标志着两家公司在AI与大数据领域的深度协作,意在挑战微软的市场地位。Accenture和Wayfair等企业已表态将迁移至Google Cloud。Google Cloud CEO Thomas Kurian强调,此合作助力客户无缝衔接两平台,加速AI转型。Agentforce可借助Google Gemini模型优化文档,利用Salesforce数据提升效率。尽管长期依赖AWS,Salesforce此举显示其多元化战略,同时增强Agentforce的多模态能力。分析师认为,这将提升客户选择与应用便利性。Marc Benioff虽批评微软Copilot,但Salesforce也在探索与微软及Oracle的合作。投资者期待周三财报中Agentforce的最新进展。
Perplexity AI挑战谷歌
生成式AI搜索初创公司Perplexity AI正研发一款AI驱动的网页浏览器“Comet”,专为代理搜索设计,旨在通过动态、预测性的体验重塑用户与网络的互动。自2022年成立以来,该公司凭借实时信息搜索应用崭露头角,如今携Comet进军竞争激烈的浏览器市场,与谷歌Chrome、微软Edge及新兴AI浏览器Dia较量。Comet可能具备任务执行能力,挑战传统搜索模式。近期,Perplexity AI推出“深入研究”服务及Android助手,展现扩张雄心。尽管每周处理超1亿次查询,其面临出版商内容争议仍未平息。公司强调尊重内容并推动收入分享,力图在AI创新与市场竞争中占据一席之地。
DeepEP优化MoE通信
DeepSeek开源周第二天发布DeepEP,首个专为混合专家(MoE)模型设计的开源EP通信库,旨在提升大规模数据处理效率。该库优化全对全GPU通信,支持NVLink和RDMA,适配DeepSeek-V3的组限制门控算法,展现高效数据传输能力。支持FP8和BF16低精度格式,并引入不占计算资源的Hook通信-计算重叠方法。测试显示,H800 GPU内节点带宽达153-158 GB/s,跨节点43-47 GB/s;低延迟设计在8专家时分发163微秒、合并318微秒,256专家时仍表现优异。需Hopper架构GPU及特定软件支持,DeepEP为MoE研究提供强大助力,推动开源AI发展。
QwQ-Max引领AI新篇
阿里巴巴新推出的QwQ-Max,基于Qwen2.5-Max架构,是一款专注深度推理的模型,其预览版QwQ-Max-Preview已开放体验。该模型在推理、数学、编程及智能代理任务中表现出色,性能超DeepSeek R1,与o1-medium媲美。它能快速解决复杂逻辑问题,生成高质量代码,并整合搜索、图像生成等外部工具,满足编程辅助、内容创作等多场景需求。使用时,用户通过官网开启“深度思考”功能,输入任务即可获得精准解答。未来,QwQ-Max将以Apache 2.0许可证开源,并推出QwQ-32B等衍生模型,进一步扩展其应用潜力,推动AI技术普及与创新。
波士顿动力采购宇树机器人
波士顿动力创始人Marc Raibert在休斯顿3DEXPERIENCE World峰会透露,其AI Institute已购置中国宇树科技的人形及小型机器人进行测试。他坦言,尽管双方是竞争对手,仍希望通过研究了解其性能。去年上海WAIC上,宇树27台人形机器人的展示令他印象深刻,与CEO交流后更肯定其成就。他还提到DeepSeek引领的中国AI创新,认为这只是开端,未来将有更多突破。谈及AGI,他强调硬件软件并重,但实现时间难测,需解决技术、伦理与监管难题,平衡发展与风险。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈