分巧克力


    儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
    小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
    为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
    1. 形状是正方形,边长是整数  
    2. 大小相同  
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)  
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000) 
输入保证每位小朋友至少能获得一块1x1的巧克力。   
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10  
6 5  
5 6  
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms

方法一:

解题思路:

1.在所有巧克力的长宽中取得最小的值(该值代表所能裁剪出的巧克力的最大边长);

2.从最大值开始遍历,求出每块巧克力的可以裁得的数目,如果总和大于等于小朋友的人数,则此值切出的正方形巧克力最大可能的边长。

源码附上:

#include <bits/stdc++.h>
using namespace std;
int maxn=100002;
struct node
{
	int H;
	int W;	
};


node NN[100002];

int main()
{
	int N,K;
	cin>>N>>K;
	int min=maxn;
	for(int i=0;i<N;i++)
	{
		cin>>NN[i].H>>NN[i].W;
		int temp=NN[i].H<NN[i].W?NN[i].H:NN[i].W;
		min=temp<min?temp:min;
	}
	//巧克力的最大可裁剪的边长 
	for(int i=min;i>=1;i--)
	{
		int cnt=0;
		//第j块巧克力 
		for(int j=0;j<N;j++)
		{
			//计算第Nj块巧克力可以剪切出几个小的;
			 int Hcnt=NN[j].H/i;
			 int Wcnt=NN[j].W/i;
			 cnt+=Hcnt*Wcnt;  
		}
		if(cnt>=K)
		{
			cout<<i<<endl;
			break;
		}
	}
	return 0;
}

方法二:

使用二分法;详细的解题思路https://www.cnblogs.com/douzujun/p/8457087.html

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值