儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
方法一:
解题思路:
1.在所有巧克力的长宽中取得最小的值(该值代表所能裁剪出的巧克力的最大边长);
2.从最大值开始遍历,求出每块巧克力的可以裁得的数目,如果总和大于等于小朋友的人数,则此值切出的正方形巧克力最大可能的边长。
源码附上:
#include <bits/stdc++.h>
using namespace std;
int maxn=100002;
struct node
{
int H;
int W;
};
node NN[100002];
int main()
{
int N,K;
cin>>N>>K;
int min=maxn;
for(int i=0;i<N;i++)
{
cin>>NN[i].H>>NN[i].W;
int temp=NN[i].H<NN[i].W?NN[i].H:NN[i].W;
min=temp<min?temp:min;
}
//巧克力的最大可裁剪的边长
for(int i=min;i>=1;i--)
{
int cnt=0;
//第j块巧克力
for(int j=0;j<N;j++)
{
//计算第Nj块巧克力可以剪切出几个小的;
int Hcnt=NN[j].H/i;
int Wcnt=NN[j].W/i;
cnt+=Hcnt*Wcnt;
}
if(cnt>=K)
{
cout<<i<<endl;
break;
}
}
return 0;
}
方法二:
使用二分法;详细的解题思路https://www.cnblogs.com/douzujun/p/8457087.html