儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
题解:要求正方形巧克边长力尽可能的大,我们可以二分这个边长,(否者超时是一定的)。然后判断这个边长能否分够k个小朋友。若分不够说明变成太大,那么边长要变小。若分够了尝试让边长变大。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+5;
int h[maxn];
int w[maxn];
int n,k;
int judge(int x){
int sum = 0;
for(int i = 0 ; i < n ; i++){
sum += (h[i]/x) * (w[i]/x);
}
if(sum >= k) return 1;
else return 0;
}
int main(){
cin >> n >> k ;
for(int i = 0 ; i < n ; i ++){
cin >> h[i] >> w[i];
}
int l = 1 , r = maxn;
int ans ;
while(l <= r){
int mid = (l+r) / 2;
//cout << mid << endl;
if(judge(mid)){
ans = mid;
l = mid + 1;
}
else {
r = mid - 1;
}
}
cout << ans << endl;
}