题意
有一个人,在一个图里面开始找罪犯了。
这个人有两天的抓捕机会,他会在每一天都有机会使用BCD机器,这个BCD机器会返回这个罪犯离他的距离是多少。
当然这个人要么在第一天去抓罪犯,要么在第二天去抓罪犯。
这个罪犯也不是一个傻逼,如果那个人第一天不抓他的话,那么第二天的时候,这个罪犯就会转移阵地。
然后现在问你,在最佳情况下,这个人抓住这个罪犯的概率是多少?
题解:
考虑最暴力的情况,枚举罪犯第一天哪儿,第二天在哪儿,枚举警察第一天在哪儿使用BCD,第二天在哪儿使用BCD
这个复杂度是n^4的,显然过不了,但是显然是对的。
我们优化一下。
暴力枚举这个警察第一天在哪儿使用BCD的地点A,暴力枚举BCD返回的距离a,再暴力枚举第二天使用BCD的地点B。
显然罪犯只有可能出现在三种位置,就是距离A地点距离为a,a-1,a+1的三个地方。
这样优化了一下之后,复杂度就变成n^3了,就可以直接莽过去了。
#include<bits/stdc++.h>
using namespace std;
const double eps = 1e-6;
const int maxn = 405;
int d[maxn][maxn],n,m;
double dis[maxn];
double posi[maxn];
vector<int> E[maxn];
vector<int> f;
void TAT()
{
memset(d,127,sizeof(127));
}
double next(int p,int di)
{
double ans = 0;
memset(posi,0,sizeof(posi));
for(int i=1;i<=n;i++)
if(d[p][i]==di)
for(auto v:E[i])
posi[v]+=1./n/E[i].size();
f.clear();
for(int i=1;i<=n;i++)
if(posi[i]>eps)
f.push_back(i);
for(int i=1;i<=n;i++)
{
double tmp = 0;
for(auto v:f)
dis[d[i][v]]=max(dis[d[i][v]],posi[v]);
for(auto v:f)
{
tmp+=dis[d[i][v]];
dis[d[i][v]]=0;
}
ans=max(ans,tmp);
}
return ans;
}
void QAQ()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)d[i][j]=n+1;
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
d[a][b]=1;
d[b][a]=1;
E[a].push_back(b);
E[b].push_back(a);
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
double ans = 0;
for(int i=1;i<=n;i++)
{
double tmp = 0;
for(int di=0;di<n;di++)
{
int cnt = 0;
for(int j=1;j<=n;j++)if(d[i][j]==di)cnt++;
if(cnt==0)continue;
double day1 = 1./n;
double day2 = next(i,di);
tmp+=max(day1,day2);
}
ans=max(ans,tmp);
}
printf("%.12f\n",ans);
}
int main()
{
TAT();
QAQ();
return 0;
}