分形维数法概念
分形维数法是一种用于描述和分析复杂形状和结构的方法。这些形状和结构可能看起来很不规则或混乱,但实际上,它们在某种程度上有一定的规律性。分形维数帮助我们量化这种规律性和复杂性。
具体展开来说,分形就是几何形状,它的某些部分与整体相似,即使放大了看,部分的形状依然和整体类似。例如,雪花、海岸线和树木的分枝都是一种分形。
传统的维数有一维(线)、二维(平面)和三维(立体)。分形维数是一种非整数维数,用来描述那些复杂度介于这些传统维数之间的形状。例如,一个分形的维数可能是1.5或2.7,这表示它比一条线复杂,但还没有达到一个平面的复杂程度。
分形维数可以用来描述自然界中的各种复杂形态,如山脉的轮廓、云的形状、植物的生长模式等;在图像处理、信号分析和材料科学等领域,分形维数可以分析和理解复杂系统和数据。
分形维数有多种计算方法,其中一种常见的方法是盒子计数法,这种方法通过在不同尺度下计算覆盖分形所需的盒子数量来估算维数。
Python程序实现
import numpy as np
import matplotlib.pyplot as plt
from skimage import io, color, filters
from matplotlib.widgets import RectangleSelector
from osgeo import gdal
def differential_box_counting(img, min_box_size=5, num_boxes=20):
assert len(img.shape) == 2
img = (img - img.min()) / (img.max() - img.min())
N = img.shape[0]
sizes = np.logspace(np.log2(min_box_size), np.log2(N), num=num_boxes, base=2).astype(int)
counts = []
for size in sizes:
reduced_image = measure_block_counting(img, size)
counts.append(reduced_image)
counts = np.array(counts