【计算机图形】分形维数法介绍以及python实现

分形维数法概念

分形维数法是一种用于描述和分析复杂形状和结构的方法。这些形状和结构可能看起来很不规则或混乱,但实际上,它们在某种程度上有一定的规律性。分形维数帮助我们量化这种规律性和复杂性。

具体展开来说,分形就是几何形状,它的某些部分与整体相似,即使放大了看,部分的形状依然和整体类似。例如,雪花、海岸线和树木的分枝都是一种分形。
传统的维数有一维(线)、二维(平面)和三维(立体)。分形维数是一种非整数维数,用来描述那些复杂度介于这些传统维数之间的形状。例如,一个分形的维数可能是1.5或2.7,这表示它比一条线复杂,但还没有达到一个平面的复杂程度。

分形维数可以用来描述自然界中的各种复杂形态,如山脉的轮廓、云的形状、植物的生长模式等;在图像处理、信号分析和材料科学等领域,分形维数可以分析和理解复杂系统和数据。

分形维数有多种计算方法,其中一种常见的方法是盒子计数法,这种方法通过在不同尺度下计算覆盖分形所需的盒子数量来估算维数。

Python程序实现

import numpy as np
import matplotlib.pyplot as plt
from skimage import io, color, filters
from matplotlib.widgets import RectangleSelector
from osgeo import gdal


def differential_box_counting(img, min_box_size=5, num_boxes=20):
    assert len(img.shape) == 2
    img = (img - img.min()) / (img.max() - img.min())
    N = img.shape[0]
    sizes = np.logspace(np.log2(min_box_size), np.log2(N), num=num_boxes, base=2).astype(int)
    counts = []

    for size in sizes:
        reduced_image = measure_block_counting(img, size)
        counts.append(reduced_image)

    counts = np.array(counts
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值