【深度学习】遥感影像变化检测基础和常用模型

基于深度学习的变化检测基础

遥感影像的变化检测(CD)是通过对比不同时间点的遥感影像信息,识别和分析地表物体在时间上的变化情况的技术。变化检测在自然灾害评估、资源管理和环境监测、城市化和土地利用管理等任务中有着广泛应用。变化检测技术可以为观察者和决策者提供更可靠的信息,对灾害的准确响应、环境的可持续发展、土地的合理规划具有重要作用。
近年来基于深度神经网络框架特别是cnn的图像处理方法在遥感影像的变化检测任务上也得到了广泛的应用,并逐渐成为了主要方法。
双时相图像和变化部分Mask
使用遥感影像进行变化检测,数据需要进行的加工包括图像预处理(辐射校正、地形校正等标准化流程)、图像配准(因为变化检测对比两个时间点的目标的形态和状态特征,需要将双时相的图像在空间上对准)。
采用深度学习方法进行变化检测,与其他方法一致,分为模型定义损失函数定义优化方法选择三部分。
模型选择:基于cnn的变化检测模型本质上是用于语义分割的模型,输出类别为2(变化区域和未变化区域)。同时,变化检测模型在特征提取部分需要融合双时相图像的特征,相比于单幅图像的语义分割是由下采样降维+特征提取和保留->特征拼接+上采样还原的两级式步骤(U-Net),变化检测的网络需要在特征提取和特征拼接做出优化,采用双分支、特征差分等机制对双时相图像中的变化信息进行建模,最后经上采样过程还原为与原图尺寸相同的显示变化信息的结果。
实验指标与语义分割一致,采用F1 score、recall、precision和MIoU等。
在这里插入图片描述
在这里插入图片描述
Recall召回率是用来衡量模型对正例的检测能力,受未检测到的正例数量影响,漏检时召回率会降低(与其翻译成召回率,个人认为应翻译成覆盖率,待讨论);
Precision精确度是用来衡量模型在所有正例中真正检测到多少正例的指标,受误判为正例的样本数量影响,当模型对负例做出错误预测时,精确度会降低;
F1是rec和pre的调和平均,适用于处理类别不平衡的情况,当需要在精确度和召回率之间寻找平衡的时候,F1比较常用;
MIoU是用来衡量预测的区域于真实区域之间的交集比例,受到每个类别的预测准确性影响。

变化检测经典模型

(1)FC-EF
原文:https://arxiv.org/abs/1810.08462

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值