7000多张草莓叶片图像数据集
7000多张草莓叶片图像数据集
关键词: 草莓
描述: 分为健康草莓好非健康草莓叶片,叶片是单独挑出来的,背景为纯色,用于分类训练,图片数量在7000张左右。
巴基斯坦芒果品种分类和分级图像数据集
巴基斯坦芒果品种分类和分级图像数据集
关键词: 地球和自然, 食物
描述:
数据集包含八种巴基斯坦芒果的图像。在拟议的数据集上进行了一个实验,以实现自动分类和收获芒果的评分,以促进农民按时交付高质量的芒果以进行出口,并使用卷积神经网络实现高精度。
研究人员和学生可以使用此数据集来开发,测试和评估不同的计算机视觉算法,以贡献不断改进的农业领域。可以将提供的数据集视为测试和比较不同最新面临的性能的基准。
Rizwan Iqbal,Hafiz Muhammad;Hakim,Ayesha(2021),“芒果品种和分级数据集”,Mendeley Data,V1,doi:10.17632/5MC3S86982.1
孟加拉国芒果叶片病害数据集
孟加拉国芒果叶片病害数据集
关键词: 植物, 深度学习, 图像分类
描述:
这些图像是从孟加拉国的四个芒果果园中收集的,孟加拉国是世界上顶级芒果发展的国家之一。该数据集包含4000张大约1800个不同叶子的图像,涵盖了7种疾病。
描述
数据类型:240x320芒果叶图像。
数据格式:JPG。
图像数:4000张图像。其中,大约1800个是不同的叶子,其余的是通过认为必要的放大和旋转来制备的。
考虑的疾病:七种疾病,即蒽,细菌溃疡,切割象鼻虫,死亡,胆汁虫,白粉病和烟熏霉菌。
班级数:八个(包括健康类别)。
实例分布:八个类别中的每一个都包含500张图像。
如何获取数据:通过手机相机从芒果树捕获。
数据源地点:孟加拉国的四个芒果果园,即Sher-e-Bangla农业大学果园,Jahangir Nagar University Orchard,Udaypur Village Mango Orchard和Itakhola Village Mango Orchard。
适用的地方:适用于区分健康和疾病叶片(两级预测)以及区分各种疾病(多级预测)。
芒果叶病图像数据集
芒果叶病图像数据集
关键词: 健康, 农业, 分类, 图像, 多类分类, 图像分类
- 数据类型:240x320芒果图像。
- 数据格式:JPG。
- 图像数:4000张图像。其中,大约1800个是不同的叶子,其余的是通过认为必要的放大和旋转来制备的。
- 考虑的疾病:七种疾病,即蒽,细菌溃疡,切割象鼻虫,死亡,胆汁虫,白粉病和烟熏霉菌。
- 班级数:八个(包括健康类别)。
- 实例分布:八个类别中的每一个都包含500张图像。-数据源地点:孟加拉国的四个芒果果园,即Sher-e-Bangla农业大学果园,Jahangir Nagar University Orchard,Udaypur村芒果园和Itakhola Village Mango Orchard。
适用的地方:适用于区分健康和疾病叶片(两级预测)以及区分各种疾病(多级预测)。
西爪哇芒果产量数据
西爪哇芒果产量数据
关键词: 农业, 初学者, 数据可视化, 文本, 熊猫
描述:
语境
该数据集包含根据2013年至2018年西爪哇省地区/城市的芒果生产量。
内容
该数据集与每年发行一次的粮食作物和园艺服务所产生的经济主题有关。所有数据集都使用印尼语言。
该数据集中变量的说明:
Provinsi:数据范围来自西爪哇省的地区。
*KODE-KABUPATEN-KOTA:根据中央统计局(BPS),每个城市和地区的代码。
NAMA-KABUPATEN-KOTA:数据范围来自西爪哇省的每个城市/地区。
jumlah_produksi:芒果生产数量(以五分为单位)。
*Satuan:表达芒果生产量(Quintals)数量的测量值。
*Tahun:生产年。
原始资料:https://opendata.jabarprov.go.id/id/id/dataset/jumlah-produksi-mangga-mangga-di-jawa-barat
上千张芒果叶片病害数据集(自然或盆栽状态下)
六、上千张芒果叶片病害数据集(自然或盆栽状态下)
分为测试、训练、验证三个文件夹
大豆种子受损阶段预测图像数据集
关键词: 农业, 食物
描述:
该数据集包括五种单独的大豆种子图像,总计5513:完整,发现,不成熟,破碎和皮肤受损。此外,每个类别中都有1000多个大豆种子图像。根据大豆分类的标准(GB1352-2009)将各个大豆的图像分为五类。带有种子的大豆图像是由工业摄像头捕获的。随后,使用图像处理算法(分割精度超过98%)将单个大豆图像(227×227像素)与大豆图像(3072×2048像素)分开。该数据集可以用于研究大豆种子的分类或质量评估。
玉米和大豆价格2008-2017年数据
关键词: 商业, 金融, 农业
描述:
### 语境
美国农业部(USDA)发布了每月一次的世界农业供应和需求估算报告(WASDE)报告,其中包括对各种美国农作物的供应和需求的预测。报告中的数据表明(除其他方面)预计农作物供应的稀缺性 - 会影响商品市场上的价格变动。(python内核很快就会跟随。)
### 内容
USDA数据是通过从5月2007年至2018年5月开始下载所有历史WASDE报告来获取的。(Python脚本汇总了数据并在此数据集中输出CSV文件。)
了解许多数据列的最佳方法是查看一份WASDE报告,并访问[带有历史报告的官方网站] [1] - 但是在此处介绍的日期之前进行预测是有用的。我已经为其他农作物生成了相应的文件 - 如果其他作物感兴趣的话,我很乐意添加它们。
价格数据已从公共网站上刮擦,并重新安排了易用性。
任何时候都有多个商品合同开放,“附近”是第一个过期的合同。“附近”文件显示在2008年2月至12月期间附近合同的近距离价格。其中包括两个单独合同的文件-Soybeans_jul14和Corn_jul14:以及开放,高,低,关闭,音量和开放式访问的文件,最后一列表示该日期所有大豆(和玉米)合同的总开放兴趣。
###致谢
WASDE数据是从美国农业部(公共领域)每月报告中提取的。
亨利·贝(Henry Be)的横幅照片
### 灵感
该数据集很有趣,因为粮食安全在全球和国内意义上都很重要。
[1]:http://usda.mannlib.cornell.edu/mannusda/viewdocumentInfo.do?documentId=1194
收获的四十种大豆品种数据集
关键词: 巴西, 农业, 初学者, 中间的, 表格
描述:
**摘要:**选择更适合不利条件(例如水稀缺或干雨期)的觅食草非常重要。主要是由于严重的气候变化以及寻找更可持续的农业方式。草草构成了肉牛饮食的基础,也被用作生物燃料的来源,用于侵蚀和土壤改善。这项工作提出了一种机器学习方法,以获取九个草料品种的分类模型,但要遵守适度和严重的水压力。幼稚的贝叶斯算法与内核密度估计方法一起使用,以获得分类模型中使用的密度。在学习模型之前,使用分组的横瓦数字技术以及G RID搜索来搜索最佳的超参数集。最佳准确性和精度结果分别为0.88和0.90。据观察,分类性能取决于训练和测试集中使用的品种。最后,还通过将它们与对每个变量和水应力或控制环境获得的一些统计数据进行比较,可以分析估计的概率密度。所提出的方法是一种互补的统计方法。它提供了用于获取有关该品种收获环境的信息的抽象模型。
**引用:** Oliveira,B.R。;Zuffo,A。M。;Silva,F。C。;Mezzomo,R;Barrozo,L.M。;Zanatta,T。S。;Santos,J.C。;Sousa,C。H。;Coelho,Y。P。;Caldas,A。D。(2023)。数据集:随后收获的40个大豆品种。农业和环境科学的趋势,(E230005),doi:10.46420/taes.e230005
**纸链接:** https://editorapantanal.com.br/journal/index.php/taes/article/view/8
大豆的liming和根神经根腐
关键词: 植物, 农业, 数据可视化, 统计分析
描述:
这项研究的目的是验证liming对根部腐烂发生率的影响和在具有不同土壤类别的四个领域提供最高大豆产量的石灰石剂量。处理以4个领域的阶乘方案排列,该田地具有不同的土壤类别(古老的,Cambisol TA,Cambisol TB和Nitosol)X 2位置x 2个位点(斑块的内部和外部)x 4剂量的石灰石(0、3、6和9 mg ha-1)。现场每个站点内的实验设计是在一个完整的随机块中,具有四个复制。评估的变量为:疾病的发生率(%)(INC);疾病进度曲线(AUDPC),大豆产量(产量),植物高度(PLH),第一个POD(INSH)插入的高度(cm),每植物的分支数(BRA),每植物的节点数量(TNOD)(TNOD),每植物的肥沃节点数量(FNOD),每个工厂的数量(FNOD),繁殖(FNOD)数量(FNOD)(FNOD)数量(FNOD)(Qudains and pods)(繁殖),繁殖物(pods),繁殖物(pods),繁殖物(pods),繁殖物,繁殖物(pod),繁殖物(pod od a pod s)每米(植物)的1000粒重量(重量)和植物数量。
#类别
农艺学,土壤,农业土壤,植物病理学
#致谢和来源
Jaqueline Huzar-Novakowiski,Maicon Balbinotti,Edson Bortoluzzi
[数据源:](https://data.mendeley.com/datasets/h6v8j338ds/1)
[图像来源:大豆上的根源腐腐 -bugwoodwiki](https://www.google.com/url?sa=i&url=https%3A%2F%2F%2FWIKI.BUGWOOD.ORGMWOOD.ORG%2FNPIPM%3ARHIZOCTONIA_ROOT_ROOT_ROOT_ROT_ROT_ROT_ROT_ROT_ON_SOY_SOYBEAN&pSIG = aOVVAW00SXKI4ZOLELOMEEEUKFWQ0&UST = 1714115014010000&source = Images&CD = VFE&OPI = 89978449&VED = 0CBQQQJHXQFWOTCFWOTCMIE25JM3IUDFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAE)
1962-2018年大豆价格因素数据
【1962-2018年大豆价格因素数据】
关键词: 商业, 食物, 投资
描述:
### 语境
大豆是主要农作物。
### 内容
汇编大豆价格和影响大豆价格的因素。每日数据。温度柱是美国主要增长地区的每日温度。生产和面积是每个国家 /地区的年度计数(2018年是估计)。商品的价格来自CME期货,未根据通货膨胀进行调整。这些CME期货的更新可以在Quandl上找到。可以添加其他数据,例如利率,国家货币价格,国家进口数据,国家温度。
我用来组装的更多原始数据。
https://github.com/motorcitycobra/soy_data_collection
浏览我的其他项目,并为我提供工作。
芒果重量、长度和圆周物理测量数据集
关键词: 分类, 深度学习, SVM, 表格, 食物
描述:
创建数据集是因为没有免费可用的Harumanis芒果物理数据集,例如重量,长度和圆周。
内容
该数据集包含105个从马来西亚Fama Perlis的水果收集中心收集的Harumanis Mango(克隆号MA 128)的105个表格物理测量数据。
引用:
M. N. Wagimin,M。H. Ismail,S。S. M. Fauzi和N. A. M.10.1109/AIDAS56890.2022.9918732。
552张芒果果实图像数据集
552张芒果果实图像数据集
关键词: 分类, 农业, 深度学习, 表格, 图像, 食物
描述:
语境
创建数据集是因为没有免费可用的芒果图像数据集,其中包括芒果图像,其成绩和质量/重量。
该数据集包含从马来西亚Fama Perlis的Fruit Collection Center收集的552张Harumanis芒果(克隆号MA 128)的图像。数据集中的图像根据8:10的A4纸张比率进行调整。所有芒果样品均在空白A4纸的顶部取,因为该纸被用作视觉提示进行质量估计。
如果使用数据集,请引用此数据集和论文:
M. H. Bin Ismail, M. N. Wagimin and T. R. Razak, "Estimating Mango Mass from RGB Image with Convolutional Neural Network," 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS), IPOH, Malaysia, 2022, pp. 105-110, doi: 10.1109/AiDAS56890.2022.9918807.
印度芒果叶片图像数据集
印度芒果叶片图像数据集
关键词: 生物学
描述:
该数据集包含32种印度芒果叶物种的图像。这些品种在其特征的基础上与彼此分开。这些通常具有纹理,形状和颜色。有了这些不同的芒果遗迹的功能,就可以进行分类。该数据集包含768张32种芒果叶种(印度)的图像,每个物种具有24个来自不同角度和方向的图像。In this research, 'Alphanso', 'Amarpali', 'Amarpali 13_1', 'Amarpali 4_9', 'Amarpali Desi', 'Ambika', 'Austin', 'Chausa 13_1', 'Chausa Desi','Dasheri Desi','Dasherion 13_1', 'Dusheri4_9', 'Duthpedha',“ Farnadeen”,“ Kent”,“ Keshar”,“ Langra desi”,“ Langra 13_1”,“ Langra 4_9”,“ Lilly”,“ Lilly”,“ Mallika”,“ Neelam”,“ Neelam”,“ Pamar”,“ Pamar”,“ Pusa Lalima”,“ Pusa lalima”,Pusa peetamber''使用了32种印度芒果物种的kela desi','ramkela 13_1','ramkela4_9','ratna'。通过为图像数据集使用卷积神经网络(CNN)算法创建模型,并实现了99.09%的分类成功。提供的数据集可以被视为测试和比较不同算法的性能的基准。
芒果果实疾病图像数据集
关键词: 疾病, 农业, 分类, 图像, 食物
描述:
芒果果实疾病图像数据集是芒果水果疾病的数据集,其中包含1700张224*224的JPG格式图像。该数据集包含四种疾病的图像,即替代性,炭疽病,黑色模具腐烂,茎和腐烂。数据集中的另一个类别是健康的水果。水果图像是使用手机摄像头从位于塞内加尔的果园捕获的。
提出了两个版本:senmangofruitdds_original是一个具有原始图像的版本,而senmangofruitdds_bgremaved包含带有背景的图像。
大豆种子损害识别图像数据集
大豆种子损害识别图像数据集
关键词: 农业, 计算机视觉, 深度学习, 图像, 图像分类
描述:
学分-IN,WEI;fu,Youhao;Xu,Peiquan;Liu,Shuo;MA,Daoyi;Zitian的江;张,西阳;Yao,Heyang;Su,Qin(2023),“大豆种子”,Mendeley Data,V6,doi:10.17632/v6vzvfszj6.6.6
该数据集包括五种单独的大豆种子图像,总计5513:完整,发现,不成熟,破碎和皮肤受损。此外,每个类别中都有1000多个大豆种子图像。根据大豆分类的标准(GB1352-2009)将各个大豆的图像分为五类。带有种子的大豆图像是由工业摄像头捕获的。随后,使用图像处理算法(分割精度超过98%)将单个大豆图像(227×227像素)与大豆图像(3072×2048像素)分开。该数据集可以用于研究大豆种子的分类或质量评估。
大豆农业数据集
关键词: 农业, 先进的, 数据可视化, 数据分析
描述:
想象一下,您是研究植物如何生长的科学家。在某些条件下,某些植物的生长更好,例如当它们获得适量的水,阳光和营养时。科学家收集有关植物的信息,以了解什么可以帮助他们发展最佳。此信息集合称为数据集。
“先进的大豆农业数据集”是有关大豆植物的特殊信息。它是由Tikrit大学农业学院的智能研究人员于2025年创建的。这些研究人员希望帮助农民种植更好的农作物并改善粮食生产。
谁制作了这个数据集?
三位重要的教授帮助将该数据集整合在一起:
助理讲师Basim Fahad Abdullah
助理教授Dawood Salman Madad博士
助理教授Wisam Dawood Abdullah
他们研究了数千种大豆植物,并写下了每种大豆植物。
数据集内部有什么?
该数据集有55,450行和13列。这意味着它有很多信息!每行代表一个大豆植物,每一列都告诉我们一些重要的东西,例如:
植物有多高
它有多少个豆荚(种子持有者)
它的重量
它拥有多少叶绿素(叶绿素有助于植物制造食物)
种子中有多少蛋白质
叶子里有多少水
该植物产生多少种子
特殊的实验条件
科学家还测试了不同的条件,以了解它们如何影响大豆的生长。他们在称为“参数”的特殊列中记录了此信息。本专栏中的字母意味着不同的事情:
G:大豆植物的类型(或“基因型”)(有6种类型)。
C:如果给植物的水杨酸(天然植物增强剂)。有三个级别:
250毫克
450毫克
没有水杨酸(对照组)。
S:对植物经历的水压力多少。有两个级别:
很少的水(占场容量的5%)
更多的水(70%的现场容量)
为什么这个数据集很重要?
该数据集对科学家,农民和研究人员非常有用。他们可以使用此信息来:
预测大豆植物在不同条件下的生长情况。
找到种植健康和生产性大豆的最佳方法。
使用计算机和人工智能帮助农民做出更好的决定。
这个数据集就像是一本植物秘密的大书,可以帮助未来改善农业和粮食生产!
USDA玉米和大豆不断增长的统计数据
关键词: 农业
描述:
### 语境
玉米和大豆生活在美国中西部,是总是 *让我着迷的主食。
### 内容
数据包含种植,收获的英亩和作物产量的价值的年度数字。没有报告一些数据,这使使用更有趣!
###致谢
该数据是从国家农业统计服务(NASS)提供的快速统计数据的,这是一个在线数据库,其中包含与美国农业生产相关的官方发表的总估计。NASS从通过以下数据收集的数据中得出这些估计:
1.每年进行数百个样本调查实际上涵盖
美国农业的各个方面
2。每五年进行一次农业的人口普查
州和县级的聚合
### 灵感
使用这个相对较小的数据集,我试图包括其他来源(例如**天气/气候数据),以提供生产性和非生产性作物年的解释。
世界大豆生产的国家清单
关键词: 农业, 数据可视化, 数据分析, 表格, 熊猫
描述:
#**语境**
根据食品和农业组织公司统计数据库的数据,这是2016年至2020年大豆生产的国家清单。2020年大豆的全球总产量为353,463,735吨,2019年的336,329,392吨增长了5.1%。
**巴西是最大的生产商,占世界产量的34%,其次是美国的32%**。
橘子叶片病害图片数据集
橘子叶片病害图片数据集
关键词: 农业, 数据清洁, 数据分析, 分类, 图像
描述:
一个超过41,000张图像的综合数据集,这些数据集分类为不同的文件夹,包括citrus_canker_diseases_leaf_orange,citrus_nutrient_deficiention_yellow_yellow_leaf_orange,healthy__leaf_orange,healthy_diseasesease _diseases_leaf_oraff_orange,young_healthyy_healthyy_leaf_leaf_leaf_leaf_leaf_leaf_orange。
这些文件夹包含图像,展示了橙树叶健康的各个方面,包括溃疡病,营养缺乏和健康的叶子。该数据集是柑橘疾病和营养失衡领域的研究,机器学习模型培训以及分析的宝贵资源。该数据集使用的分类模型令人印象深刻的精度为99.77%,微小分类率为0.23%,表现出了出色的性能,从而可以准确识别和分类不同的橙色树叶条件。这些图像的全面集合为理解和解决橙树健康的复杂性提供了见解和机会。
橙子疾病图像数据集
橙子疾病图像数据集
关键词: 地球和自然, 农业, 人工智能, 计算机视觉, 深度学习, 多类分类
描述: 该数据集是为了构建机器学习和深度学习算法的开发,以执行橙子中的疾病分类。在此数据集中,有新鲜的橙色和其他三种类别的疾病,柑橘溃疡,黑点和绿色柑橘类,分为4类文件夹,每类有图片180-300不等。
苹果香蕉橘子分类图像数据集
苹果香蕉橘子分类图像数据集
关键词: 食物
描述: 主要是用来进行分类,包含新鲜的苹果、新鲜的橘子、新鲜的香蕉、腐烂的苹果、腐烂的橘子、腐烂的香蕉几类图片,每类有200-300张图片左右。
苹果与橙色二进制分类图像数据集
苹果与橙色二进制分类图像数据集
关键词: 初学者, 二进制分类, 在线社区, 张量, pythorch, 图像分类
描述:
该数据集包含800张图像(400张苹果和400个橙色),用于图像分类任务。这些图像分为两个文件夹:苹果和橙色,它与pytorch的torchvision.datasets.imagefolder完全兼容。
橘子与葡萄柚的重量、直径等测量数据
橘子与葡萄柚的重量、直径等测量数据
关键词: 食物
描述:
橘子与葡萄柚
分离橙子和葡萄柚的任务对人来说是相当明显的,但是即使手动观察仍然存在一些错误。该数据集采用“平均”橙色和葡萄柚的颜色,重量和直径,并生成较大的数据集,其中包含各种值,并且是“ oranges”和“葡萄柚”。
户外场景拍摄葡萄叶图像数据集
户外场景拍摄葡萄叶图像数据集
关键词: 酒精, 植物, 农业, 初学者, 分类
描述:
数据
该数据集包含我在2020年夏季使用电话相机收集的11种葡萄藤品种的叶子的照片。将照片放入文件夹中,每个文件夹都有相应品种的命名。
品种清单:
1。Auxerrois
2。赤霞珠
3。赤霞珠
4。霞多丽
5。梅洛
6。MüllerThurgau
7。黑比诺
8。雷司令
9。长相思
10。西拉
11。Tempranillo
葡萄叶片ESCA(葡萄黑麻疹)图像数据集
二、葡萄叶片ESCA(葡萄黑麻疹)图像数据集
关键词: 生物学, 植物, 农业, 计算机视觉, 图像分类
描述:
该数据集提供了与两个类别有关的葡萄叶图像的集合:从受ESCA疾病和健康叶子影响的植物中获取的不健康叶子。
增强葡萄病害图片数据集
一、增强葡萄病害图片数据集
关键词: 地球和自然, 农业, 中间的, 计算机视觉, 图像, 英语
描述:
使用缩放,水平翻转,垂直翻转,旋转,亮度变化和剪切来增强数据。每个级别都有1344个增强图像和1656个图像,每类总计3000张图像。这四个类别是黑色腐烂,ESCA,叶枯萎病和健康。
我使用此数据集写了一篇论文:https://doi.org/10.59720/23-251
葡萄病病害图片数据集(原始)
葡萄病病害图片数据集(原始)
关键词: 农业, 中间的, 计算机视觉, 图像, 英语
描述:
我使用此数据集写了一篇论文:https://doi.org/10.59720/23-251
1600张RGB葡萄植物图像数据集
1600张RGB葡萄植物图像数据集
关键词: 疾病, 植物, 农业, 计算机视觉, 图像分类
描述:
该数据集由RGB颜色空间中的1600张葡萄植物图像组成。这些图像分为四类。每个班级都有400张图像
资料来源:https://figshare.com/articles/dataset/healthy_and_and_disease_affected_leaves_of_grape_plant/13083890/1
单葡萄叶片病害图像数据集
单葡萄叶片病害图像数据集
主要分为四类:
葡萄 黑腐病(1181张)
葡萄 黑美病(1384张)
葡萄 健康(424张)
葡萄叶枯病(叶斑)病(1077张)
葡萄叶片分类图像数据集
葡萄叶片分类图像数据集
关键词: 农业, 计算机科学, 计算机视觉, 深度学习, 转移学习
描述:
数据集:https://www.muratkoklu.com/datasets/
Koklu Murat(A),Lonsen M. Fahri(B),Ozkan Ilker Ali(A),Aslan M. Fatih(C),Sabanci Kadir(C)
(a)土耳其塞尔库克大学计算机工程系,土耳其科尼亚
(b)土耳其科尼亚尼克梅丁·埃尔巴卡大学电气和电子工程系
(c)土耳其卡拉曼的卡拉马诺格卢大学电气工程系
引用请求:
Koklu,M.,Lunlersen,M.F.,Ozkan,I.A.,Aslan,M.F。,&Sabanci,K。(2022)。CNN-SVM研究基于选定的葡萄叶分类的深层特征。测量,188,110425。doi:https://doi.org/10.1016/j.measurement.2021.110425
亮点
•Mobilenetv2 CNN模型对五类葡萄叶的分类。
•使用具有不同内核函数的SVM分类。
•实施用于高分类百分比的功能选择算法。
•使用CNN-SVM立方模型以最高精度进行分类。
摘要:葡萄藤的主要产物是葡萄的新鲜或加工。此外,葡萄叶每年被作为副产品收获一次。在价格和口味方面,葡萄叶的种类很重要。在这项研究中,通过使用葡萄叶的图像进行基于深度学习的分类。为此,使用特殊的自我灌输系统拍摄了500片葡萄树的图像。后来,使用数据增强方法增加到2500。该分类是使用最先进的CNN模型微调MobilenetV2进行的。作为第二种方法,从预先训练的MobilenetV2的逻辑层中提取了特征,并使用各种SVM内核进行了分类。作为第三种方法,通过Chi-Squares方法选择了从MobilenetV2的逻辑层提取的1000个特征,并降低至250。然后,使用所选功能使用各种SVM内核进行分类。最成功的方法是通过从逻辑层中提取特征并使用Chi-Squares方法降低特征来获得的。最成功的SVM内核是立方体。该系统的分类成功已确定为97.60%。据观察,尽管分类中使用的特征数量减少,但特征选择增加了分类的成功。
关键字:深度学习,转移学习,SVM,葡萄叶,叶子识别
葡萄质量数字统计数据
葡萄质量数字统计数据
关键词: 食物
描述:
***数据集提供了有关单个葡萄样品的详细信息,包括其唯一的标识符,品种和地理起源。它还量化了评分,类别,糖含量和酸度等质量属性。记录了诸如簇体重和浆果大小之类的物理特征,以及收获日期,阳光暴露,土壤水分和降雨等环境因素。
橘子与葡萄柚基础数据差异数据集(重量、直径、颜色等)
橘子与葡萄柚基础数据差异数据集(重量、直径、颜色等)
关键词: 食物
描述:
橘子与葡萄柚
分离橙子和葡萄柚的任务对人来说是相当明显的,但是即使手动观察仍然存在一些错误。该数据集采用“平均”橙色和葡萄柚的颜色,重量和直径,并生成较大的数据集,其中包含各种值,并且是“ oranges”和“葡萄柚”。
内容
数据集主要是虚构的。但是现在衡量从那里开始水果并创建人造样本似乎是足够的。
草莓果实分类图像数据集
草莓果实分类图像数据集
关键词: 农业, 数据可视化, 二进制分类, 食物, 图像分类, 图像分割
描述:
与我们的草莓仙境一起参加视觉盛宴!
当我们揭露精美的数据集时,以夏季甜味的缩影 - 草莓(The Strawberry)展示了一个充满活力的红色和绿绿色的世界。有了512张迷人的图像,我们通过两个迷人的班级向您展示了自然赏金的二分法:可挑剔且无法挑选。
1:可挑剔
深入研究成熟的草莓的魅力。每张图像都是太阳柔软的爱抚的证明,使这些红宝石珠宝变得完美。充满活力的红色色调在阳光下闪闪发光,招呼您品尝其中的多肉。像您想象的那样,感觉到挑剔这些令人愉悦的浆果的期待,它们的甜味有望成为夏天无与伦比的味道。
2:不可接受
看着草莓的美丽,在其毫不掩饰的未触及的状态下。在这堂课中,见证自然的复杂舞蹈,因为它在这些年轻的,未来的宝藏周围绘制了绿色的画布。绿色与未来甜度的承诺的对比创造了对成长和潜力的视觉叙事。每张图像都封装了草莓的原始美在其迈向成熟之旅的风口浪尖上。
颜色和纹理交响曲
我们的数据集超出了仅仅图像。这是一个视觉交响曲,捕捉了草莓生命周期的本质。从成熟的浆果的天鹅绒般的触感到其未经来说的同类产品的牢固性,都可以探索使每种草莓成为独特艺术品的多种质地
草莓常见疾病(叶片、果实、花朵)图像数据集
草莓常见疾病(叶片、果实、花朵)图像数据集
关键词: 生物学, 农业, 图像
描述:
包括以下7种常见的草莓疾病:
角叶斑点,蒽果实腐烂,开花枯萎病,灰色霉菌,叶点,白粉病果实,白粉病叶子
大棚地膜上草莓整株图片数据集
大棚地膜上草莓整株图片数据集
描述: 大棚地膜上草莓整株图片数据集,已经做了标注
草莓叶分类图像数据集
草莓叶分类图像数据集
关键词: 生物学, 植物, 初学者, 深度学习, 图像, 食物, 张量
描述:
数据集包含草莓叶的图像。数据集中有100张图像。数据集可用于二进制分类问题,因为数据集中的两个类别的叶子:
1-草莓新鲜
2-草莓床
2500张草莓疾病检测图像数据集
2500张草莓疾病检测图像数据集
关键词: 地球和自然, 生物学, 植物, 计算机视觉, 深度学习, 图像
描述:
内容
该数据集总共由2500张图像组成,其中包括七种不同类型的草莓疾病的相应分割注释文件。
致谢
该数据集由JBNU计算机科学和工程部的AI实验室成员收集。允许根据您的要求对其进行修改,并按原样使用它,或者在需要时增加其他数据集。
如果您将其用于自己的研究工作,请引用以下论文。
afzaal,u。Bhattarai,b。Pandeya,Y.R。;Lee,J。基于面膜R-CNN的草莓疾病的实例分割模型。传感器2021,21,6565。
1500多张三类草莓叶片疾病数据集
1500多张三类草莓叶片疾病数据集
关键词: 生物学
描述: 1500多张三类草莓叶片疾病数据集,分为三个文件夹