自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

All In AI and Big Data

欢迎关注我~我会努力给大家带来清晰透彻的大数据和人工智能相关的内容分享哦!

  • 博客(53)
  • 收藏
  • 关注

原创 【Flink实战】三、分享规则(关联分析)引擎的学习资料

规则引擎或者复杂关联分析引擎的学习资料和参考内容,干货满满,一定要收藏起来!

2022-07-12 19:38:58 1081 1

原创 【Flink实战】二、分享关于时间窗口机制的学习理解和极好的博客链接

最近在研究flink的时间窗口机制,遇到了很多问题,也学到了很多。flink的时间窗口机制属于flink中的重难点了,也属于flink的亮点之一。这篇分享我自己学习时间窗口的过程和笔记,一起进步呦~..................

2022-07-11 18:43:48 533

原创 NDSS 2022 接收的列表

安全四大顶会之一的NDSS 2022年接收的论文列表,安全研究顶好的研究素材都是从论文里来。

2022-06-21 19:49:15 3179

原创 [LeetCode每日一题] |686.重复叠加字符串匹配

专注我,带你一起刷Leecode,和算法大佬卷起来!

2022-06-10 10:20:05 201

原创 Java中Collections类的singletonList() 方法及示例

java.util.Collections 类的 singletonList() 方法用于返回仅包含指定对象的不可变列表。 返回的列表是可序列化的。 该列表将始终仅包含一个元素,因此称为单例列表。 当我们尝试在返回的单例列表中添加/删除元素时,它会给出 UnsupportedOperationException。句法:public static List singletonList(T o)参数:此方法将对象 o 作为参数存储在返回的列表中。返回值:此方法返回一个仅包含指定对象的不可变列表。以

2022-05-05 16:28:51 6517

原创 【从0到1学会云原生系列】之云原生应用基础和入门

**背景介绍**相信提到云计算,大家一定都不陌生。自2006年谷歌提出云计算概念以来,云计算已经进入到第十六个年头。在这期间,包括亚马逊、微软、谷歌、阿里巴巴、腾讯、华为、百度等在内的全球科技巨头均纷纷下场参与这场竞争。与此同时,也诞生了一批UCloud、青云这样的科创上市企业。**在历经多年发展后,云原生被认为是云计算的下一个未来。**去年9月,一家名为Snowflake的云原生数据仓库厂商上市,当天市值即涨破700亿美元,一举成为软件史上最大IPO。随着云计算平台的成熟和分布式框架的普及,越来越

2022-02-28 15:23:37 1356

原创 RETE学习笔记及Python实现

用 Python 实现 RETE

2022-02-21 15:55:24 1089

原创 [一年刷满一千题]| 欢迎关注github上的刷题日志,每天更新~

​小伙伴们,我新建了一个github仓库~记录自己刷的leecode算法题目以及题解。因为把刷算法题当作爱好,所以每天都有热情维护该仓库,每天都会更新,欢迎star,欢迎fork!~希望能和各位分享自己做题的见解!链接如下:github仓库地址仓库部分截图如下:​​​​每天都会更新,**欢迎star,欢迎fork!**~希望能和各位分享自己做题的见解!​...

2022-01-04 20:42:12 243

原创 [LeetCode每日一题] | 1609.奇偶树

https://github.com/dzw001/leetcode_notebook

2021-12-29 00:31:57 126

原创 [LeetCode每日一题] | 1154.一年中的第几天

https://github.com/dzw001/leetcode_notebook

2021-12-29 00:30:44 3524

原创 [LeetCode每日一题] | 1078.Bigram分词

https://github.com/dzw001/leetcode_notebook

2021-12-29 00:29:50 371

原创 [LeetCode每日一题] | 1044.最长重复子串

https://github.com/dzw001/leetcode_notebook

2021-12-29 00:27:38 504

原创 [LeetCode每日一题] | 825.适龄的朋友

https://github.com/dzw001/leetcode_notebook

2021-12-29 00:26:00 3898

原创 686.重复叠加字符串匹配

Tips:该专栏的题解整理在https://github.com/dzw001/leetcode_notebook,有需要的童鞋自取哦~题目链接https://leetcode-cn.com/problems/repeated-string-match题目描述题目难度:中等给定两个字符串 a和 b,寻找重复叠加字符串 a的最小次数,使得字符串 b成为叠加后的字符串 a的子串,如果不存在则返回 -1。注意:字符串 "abc" 重复叠加 0 次是 "",重复叠加 1 次是&nbs

2021-12-29 00:23:16 3533

原创 [LeetCode每日一题] | 1. 两数之和

Tips:该专栏的题解整理在https://github.com/dzw001/leetcode_notebook,有需要的童鞋自取哦~题目链接https://leetcode-cn.com/problems/two-sum/题目描述题目难度:简单给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target  的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你

2021-12-29 00:19:25 163

原创 论文阅读——《基于图神经网络进程行为嵌入表示的入侵检测》(二)

核心概念:系统日志对象连接图定义:系统日志对象连接图是用于表示计算机系统内部逻辑对象及之间关联的数据结构。其数学表达可以写为 G = <V, E>,其中 V为顶点的集合, E为边的集合,具体如下:顶点(V):逻辑对象包括进程、文件、网络套接字;边(E):上述对象之间的关系;属性函数(Attr(e, f)):用于对图结构中元素 e(可以是顶点或边)的属性字段 f赋值。举例:本文的实验所使用的事件发生器运行在 Linux 系统上,其支持的事件所导出的顶点和边的类型为:Attr(

2021-12-26 23:40:46 498

原创 Markdown极简入门

Markdown极简入门该博客是Markdown的极简入门法则。将从以下四点带大家认识Markdown:什么是Markdown为什么要用MarkdownMarkdown适用人群常用Markdown语法什么是MarkdownMarkdown是一种轻量级标记语言,它的创始人为约翰格鲁伯。Markdown允许人们使用易读、易写的纯文本格式编写文档,然后将其转换成有效的XHTML/HTML文档。由于Markdown具有轻量级、易读、易写等特性,并且对图片、图表、数学公式都很友好,因此目前许多网站

2021-12-26 22:45:29 444

原创 统计学习方法笔记 | 第一章统计学习及监督学习概论

统计学习方法 第一章笔记1.1 统计学习本书介绍的就是机器学习方法。第一章主要讲述监督学习方法。监督学习是从标注数据中学习模型的机器学习问题,是统计学习或机器学习的重要组成部分。监督学习方法主要包括用于()、()与()的方法。这些方法在自然语言处理、信息检索、文本数据挖掘等领域中有着及其广泛的应用。答案:监督学习方法主要包括用于分类、标注与回归问题的方法。这些方法在自然语言处理、信息检索、文本数据挖掘等领域中有着及其广泛的应用。统计学习特点 = 统计机器学习 = 机器学习统

2021-12-26 22:42:20 504

原创 论文阅读——《基于图神经网络进程行为嵌入表示的入侵检测》(一)

最近时间比较紧张,没时间一口气看完文献,只能看一点就记录一点了。引言入侵检测系统应当包涵以下组件:事件产生器:按照给定的粒度,收集系统中发生的事件,提供给事件分析器和事件数据库。事件分析器响应单元事件数据库本文主要着眼于事件产生器这一环节。常见的事件产生器所使用的数据结构一般为“日志序列”,但这种结构能提供的“日志关联性”信息较少,且具有强顺序约束、不抗混淆等缺点。但如果以图 ( Graph ) 作为事件数据的载体,就能够有效缓解上述的各种缺点。(文章在这里提到了另一篇文献中的“起

2021-12-19 23:59:21 1030 1

原创 实时语义分割模型——BiSeNet

主要思想:在语义分割任务中,低阶的细节特征和高阶的语义特征一样重要,但当下的方法为了取得更快的推理速度,往往牺牲掉了低阶特征,从而导致精度的严重下降。因此作者提出了一个由两条分支组成的网络架构,分别是细节分支和语义分支。细节分支中特征图的channel数较少,而分辨率较高,有利于提取图像上的边缘、角点等细节信息;语义分支中特征图的channel数较多,而分辨率较低,有利于提取高层的语义特征。最后再通过作者设计的Guided Aggregation Layer对两者所提取的特征进行聚合。网络结构:De.

2021-12-19 23:54:08 1801 1

原创 Python异常检测工具箱——pyod

简介:pyod(Python Outlier Detection)是一个集成了30余种异常检测方法和模型的Python工具箱。从经典的 LOF (SIGMOD 2000) 到近两年的 COPOD (ICDM 2020) 和 SUOD (MLSys 2021) 。特性:丰富的模型,从 scikit-learn 中的经典算法,到近期的深度学习算法,以及诸如 COPOD 的新兴算法。兼容 Python2 和 Python3。pyod对所涵盖的各种异常检测算法提供了统一的API,便于学习和使用。.

2021-12-12 23:46:21 5410 2

原创 论文阅读笔记——STDC-Seg

作者参考了BiSeNet,并在其基础上对模型的架构进行了改进,达到了取得了更快的速度和更高的精度(没有提到显存占用,经测试,STDC2_50在转为trt后,显存占用大致在900M左右)BiSeNet的设计是一个双流网络,spatial path用于提取图像的细节信息,semantic path用于提取语义信息作者认为额外的spatial path会消耗更多的时间,而且是从其他预训练任务(如图像分类)中“借”来的backbone,并不是针对于语义分割任务设计的。作者设计了两种STDC模块,一种保持输入.

2021-12-12 23:17:28 3429

原创 【Flink实战】四、本地Mac+homebrew+Flink1.12.0的安装与运行

flink也搭建过好多回了。在Linux上搭建过,在mac上搭建过。但是,因为最近电脑频繁出问题,又不想一直登云主机去运行flink程序,于是想着在本地搭一个flink环境。话不多说,开始吧~安装步骤java的安装 推荐1.8版本,java_version:1.8.0_221。mac上的flink安装需要首先安装brew。经过试错和实践,最终发现可以有效下载homebrew的命令如下:/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/Homebr

2021-12-08 21:26:36 2016

翻译 Python Mocking学习笔记:产生实际数据前先造假数据

翻译自:Python Mocking 101: Fake It Before You Make It欢迎看到这则使用Python语言模拟数据的基础指导。这篇博文诞生于我需要测试使用了大量网络服务的代码以及我使用GoMock的经验。GoMock向我展示了当操作正确时,模拟数据的功能是多么的强大。接下来我先从模拟的哲学讨论开始,因为好的模拟需要不同的思维而不是环境。开发是关于制造东西,而mocking是关于伪造东西。这似乎很明显,但模拟测试的“伪造”方面深入人心,理解这一点完全改变了人们对测试的看法。 之后,

2021-12-08 21:23:05 309

原创 flink使用过程中踩过的坑【持续更新中】

总结Flink 升级1.12版本的坑

2021-06-25 19:37:27 204

原创 【Flink实战】一、flink 如何运行scala程序?

flink 如何运行scala程序?先参考了链接:https://www.liujiajia.me/2019/9/10/package-flink-scala-project-with-intellij-ideasbt下载地址:https://www.scala-sbt.org/download.htmlbin\flink.bat run -c org.example.WordCount D:\liujiajia\github\flink-project\target\scala-2.12\fli

2021-06-25 19:25:36 1018

原创 Python数据分析【第11天】| DataFrame转化格式并保存(to_excel(),to_json(),to_csv())

系列文章目录第1天:读入数据第2天:read()、readline()与readlines()第3天:进度条(tqdm模块)第4天:命令行传参(argparse模块)第5天:读、写json文件(load()、loads()、dump()、dumps())第6天:os模块、glob模块第7天:pandas.DataFrame第8天:DataFrame的三种数据处理基本操作(df.drop(), df.fillna(), df.drop_duplicates())第9天:DataFrame的属

2021-06-21 21:32:46 1851

原创 Python数据分析【第10天】| DataFrame的排序、排名和索引重置(sort,rank,index)

系列文章目录第1天:读入数据第2天:read()、readline()与readlines()第3天:进度条(tqdm模块)第4天:命令行传参(argparse模块)第5天:读、写json文件(load()、loads()、dump()、dumps())第6天:os模块、glob模块第7天:pandas.DataFrame第8天:DataFrame的三种数据处理基本操作(df.drop(), df.fillna(), df.drop_duplicates())第9天:DataFrame的四

2021-06-08 17:22:51 3044 2

原创 什么年代了还不会用Docker吗?——手把手教你安装和使用Docker

文章目录前言一、安装1.卸载原有的Docker2.安装Docker二、配置1.配置docker镜像源2.配置用户组3.在docker中调用GPU三、使用1.一些概念2.一个例子2.1 概述2.1 从公有仓库中拉取镜像2.2 创建容器2.3 挂载目录总结前言简单易懂的教程,手把手教你安装和使用Docker。一、安装1.卸载原有的Dockersudo apt-get remove dockersudo apt-get remove docker.iosudo apt-get remove do

2021-06-07 20:41:07 386 1

原创 Python数据分析【第9天】| DataFrame的属性编码、数据合并和连接(get_dummies,merge,join,concat)

系列文章目录第1天:读入数据第2天:read()、readline()与readlines()第3天:进度条(tqdm模块)第4天:命令行传参(argparse模块)第5天:读、写json文件(load()、loads()、dump()、dumps())第6天:os模块、glob模块第7天:pandas.DataFramepython数据分析学习第8天记录系列文章目录前言一、今天所学的内容二、知识点详解2.1 删除行2.1.1 按==标签==来删除列2.1.2 按==序号==来删除列2.2

2021-06-03 23:45:21 1343

原创 Python数据分析【第8天】| DataFrame的三种数据处理基本操作(df.drop(), df.fillna(), df.drop_duplicates())

系列文章目录第1天:读入数据第2天:read()、readline()与readlines()第3天:进度条(tqdm模块)第4天:命令行传参(argparse模块)第5天:读、写json文件(load()、loads()、dump()、dumps())第6天:os模块、glob模块第7天:pandas.DataFramepython数据分析学习第8天记录系列文章目录前言一、今天所学的内容二、知识点详解2.1 删除行2.1.1 按==标签==来删除列2.1.2 按==序号==来删除列2.2

2021-06-02 22:41:06 1280 3

原创 Python数据分析【第7天】| pandas.DataFrame

系列文章目录python数据分析学习第一天记录python数据分析学习第二天记录python数据分析学习第三天记录python数据分析学习第四天记录python数据分析学习第五天记录python数据分析学习第六天记录系列文章目录前言一、今天所学的内容二、python知识点详解总结前言数据分析的过程中,我们难免会遇到需要处理某个文件夹内的大量数据文件的情况,这时我们就要先获得每个文件的路径,而这就可以用到我们今天所讲的两个python模块。一、今天所学的内容今天讲得内容是python

2021-06-01 23:58:31 488 2

原创 Python数据分析【第6天】| os模块、glob模块

系列文章目录python数据分析学习第一天记录python数据分析学习第二天记录python数据分析学习第三天记录python数据分析学习第四天记录python数据分析学习第五天记录python数据分析学习第六天记录系列文章目录前言一、今天所学的内容二、python知识点详解总结前言数据分析的过程中,我们难免会遇到需要处理某个文件夹内的大量数据文件的情况,这时我们就要先获得每个文件的路径,而这就可以用到我们今天所讲的两个python模块。一、今天所学的内容今天讲得内容是python

2021-05-31 20:50:30 513 2

原创 Python数据分析【第5天】| 读、写json文件(load()、loads()、dump()、dumps())

系列文章目录python数据分析学习第一天记录python数据分析学习第二天记录python数据分析学习第三天记录python数据分析学习第四天记录python数据分析学习第五天记录系列文章目录前言一、今天所学的内容二、python知识点详解总结前言周末偶尔也需要放松一下,今天就讲一个小知识点吧。一、今天所学的内容今天来讲一下python如何把json文件读取为对应的数据类型,以及如何将列表、字典等数据类型存为json文件。二、python知识点详解直入主题,首先导入json模块

2021-05-30 23:36:38 444 2

原创 Python数据分析【第4天】| 命令行传参(argparse模块)

系列文章目录python数据分析学习第一天记录python数据分析学习第二天记录python数据分析学习第三天记录python数据分析学习第四天记录系列文章目录前言一、今天所学的内容二、python知识点详解1.安装与导入2.基本用法总结前言对于新手而言,还有什么比命令行传参更酷的呢?一、今天所学的内容我们常常需要用同一个python脚本去处理不同的数据,但这就难免需要反复打开脚本来修改其中的某些参数,最常见的例子就是当输入文件发生变化时,需要修改对应的路径参数。这时,我们就可以用ar

2021-05-29 23:59:30 544 1

原创 Python数据分析【第3天】| 进度条(tqdm模块)

系列文章目录python数据分析学习第一天记录python数据分析学习第二天记录python数据分析学习第二天记录系列文章目录前言一、今天所学的内容二、python知识点详解1.安装与导入2.基本用法3.定制自己的进度条总结前言你有没有这样的经历,在运行一段需要跑很久的循环代码时,盯着命令行上单调闪烁着的光标,仿佛它能闪到天荒地老,闪到宇宙尽头。如果有的话,那么今天的内容就是专为“等待焦虑综合症”患者准备的特效药。一、今天所学的内容处理大量数据时,常会遇到今天学到的内容是没有实际作用,但

2021-05-28 23:59:26 1072 3

原创 Python数据分析【第2天】| read()、readline()与readlines()

系列文章目录python数据分析学习第一天记录提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档python数据分析学习第二天记录系列文章目录前言一、今天所学的内容二、使用步骤1.引入库2.读入数据总结前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参

2021-05-27 23:26:55 511

原创 Python数据分析【第1天】| 读入数据

python数据分析学习第一天记录前言一、数据预处理二、今天学到的方法1.引入库2.读入数据3.学习总结总结前言随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,而学习机器学习,离不开python语言的学习,今天我开启了python数据分析之旅,希望每天可以学一点,记录一点。一、数据预处理在遇到一个数据分析的话题或项目时,我们所要做的第一步是认真读懂题目,分析出题目给予我们的信息,分析出题目制定的任务。机器学习项目的题目一般会给很多数据,然后这些数据之间有一定的关联

2021-05-26 23:45:02 578

原创 Homework5解答

研究背景:统计学习理论的核心概念就是用VC维来描述学习机器的复杂度,并以VC维为出发点推导出了表示学习机器推广能力的界的概念。统计学习理论在不需要利用样本数趋于无穷大的渐进性条件的情况下致力于寻找在小样本情况下学习问题的最优解,这使得在小样本情况下统计学习理论同样具有良好的推广价值。VC维:指示函数集的VC维是指用来刻画指示函数集容量的系数h。如果指示函数集的生长函数以参数h的对数函数为界...

2020-07-11 21:32:00 86

原创 哥伦比亚大学教导学生必须掌握的『100种学习方法』

哥伦比亚大学教导学生必须掌握的『100种学习方法』。读得慢,长期下来读得少。阅读中有30%~50%都是没用的。敲打节拍来避免大脑阅读出声,以刺激皮层,但不可依赖过多。情绪是可以操纵的,尽量往好的方向引导,行为才会改变。预习学会20%,上课学会50%,回顾学会100%,复习时应无新知识。写下问题,越清楚,得到的答案也就越透彻。先背佐证或例子,有些抽象概念是要一定积累才能理解的。跟...

2020-06-08 05:17:00 361

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除