最近打算入坑异常检测,准备先从应用开始,先尝试着用一下相关的工具和算法,有一个直观的感受,然后再从应用的过程中寻找切入点,逐步了解相关的理论和模型。pyod就是一个非常符合我当下需求的一个工具箱,其中集成了从经典模型到新兴算法的数十种异常检测算法与模型,因此在这里先对他进行了一个大致的了解。
- 简介:
- pyod(Python Outlier Detection)是一个集成了30余种异常检测方法和模型的Python工具箱。从经典的 LOF (SIGMOD 2000) 到近两年的 COPOD (ICDM 2020) 和 SUOD (MLSys 2021) 。
- 特性:
- 丰富的模型,从 scikit-learn 中的经典算法,到近期的深度学习算法,以及诸如 COPOD 的新兴算法。
- 兼容 Python2 和 Python3。
- pyod对所涵盖的各种异常检测算法提供了统一的API,便于学习和使用。
- 范例:
# 训练 COPOD 模型
from pyod.models.copod import COPOD
clf = COPOD()
clf.fit(X_train)
# 查看数据的异常分数
y_train_scores = clf.decision_scores_ # 训练集
y_test_scores = clf.decision_function(X_test